Neural Block Sampling

Tongzhou Wang, Yi Wu, Dave Moore, Stuart Russell

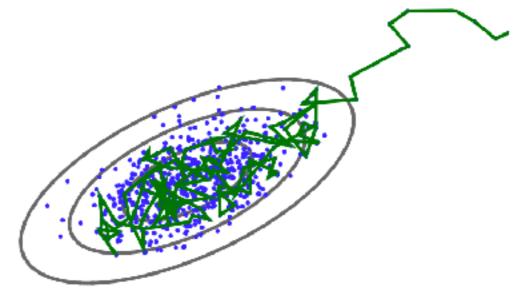
UC Berkeley

Probabilistic Programming

- Model-based probabilistic inference
- Formal representation of models as samplegenerating programs, e.g.,
 - non-differentiable models with discrete variables
 - open-universe models
 - context-specific dependencies
- Need black-box inference algorithms

Markov Chain Monte Carlo

- Sample from target distribution p(x):
 - Construct a Markov chain with stationary distribution p(x)
 - Random walk



• Choice of MC has large impact on performance

MCMC Proposal

- Generic single variable proposal:
 - slow mixing in models with tight coupling
 - stuck in local optima
- Block proposal:
 - computational cost
 - often hand-engineered
- Given more structural information, construct good and general block proposals?

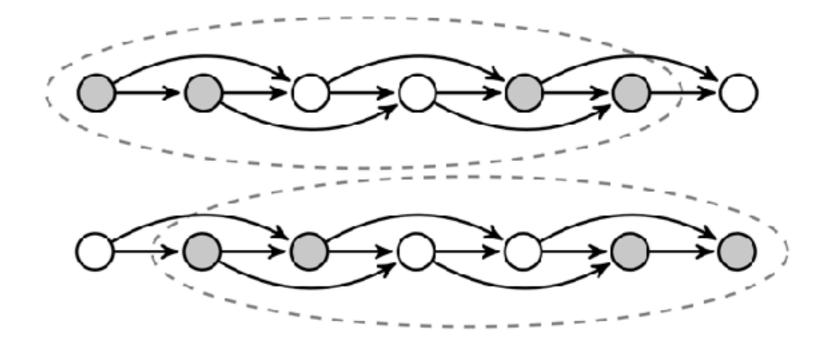
Structural Motif

- Chains _____O
- Grids
 Trees
 Rings
- etc.

Proposals for Structural Motifs

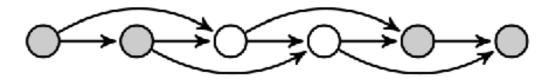
- Model:
 - $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$
- Motif:

Instantiations:



Neural Block Proposals

- Focus on a certain motif of interest
- Use neural network to approximate Gibbs block proposal: local params ∪ Markov blanket values → block proposal distribution

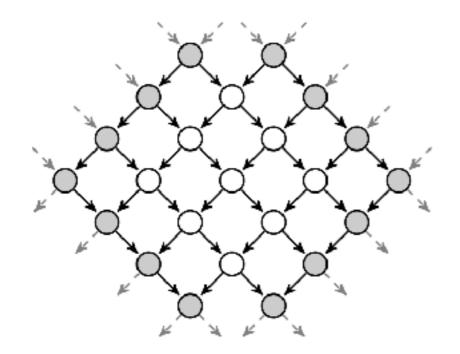


- Proposal parametrized as a mixture distribution [Bishop 94]
- Train using prior samples to minimize expected KL divergence
 - Unlimited training data by sampling from model
 - Target equivalent to maximize log likelihood of samples
- No assumption on variables being discrete/continuous

Neural Block MCMC

- Given:
 - A inference task on a graphical model
 - Hand-identified motifs and their instantiations in the model
- 1. Train/retrieve neural block proposals for these motifs
- 2. Run MCMC updates:
 - a. Propose using neural block proposals (if possible)
 - b. Accept/reject with MH rules

General Binary Grid BNs



$\begin{cases} [0,1] \\ [1,0] \\ \text{Dirichlet}([0.5,0.5]) \end{cases}$	w.p. $\frac{1}{40}$
{ [1,0]	w.p. $\frac{1}{40}$
Dirichlet $([0.5, 0.5])$	w.p. $\frac{19}{20}$

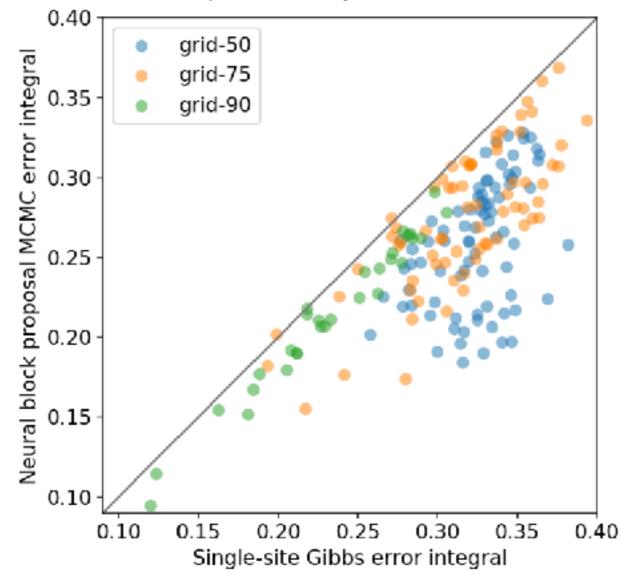
Random CPT entry

Structural Motif

Training: Random BN

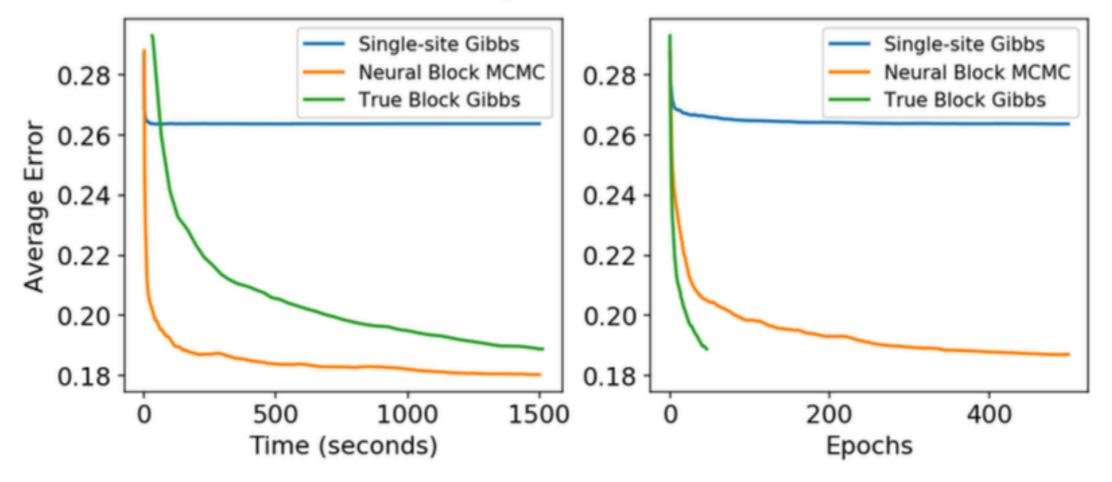
General Binary Grid BNs

- Test on 180 grid models from UAI 08 competition
- grid-k: k% deterministic dependency

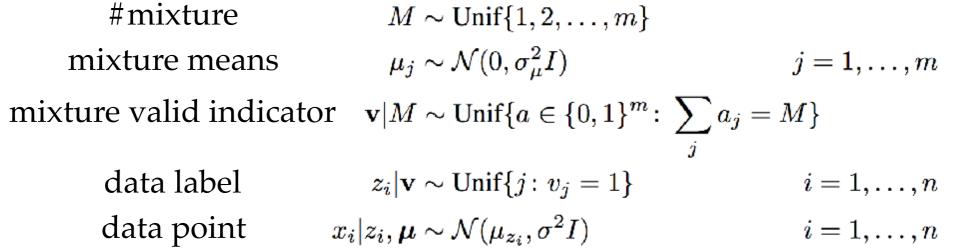


General Binary Grid BNs

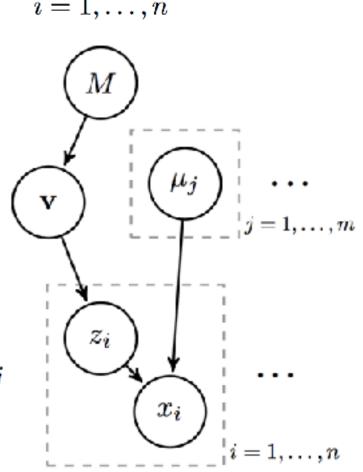
20x20 size grid-75 model (75-20-9)



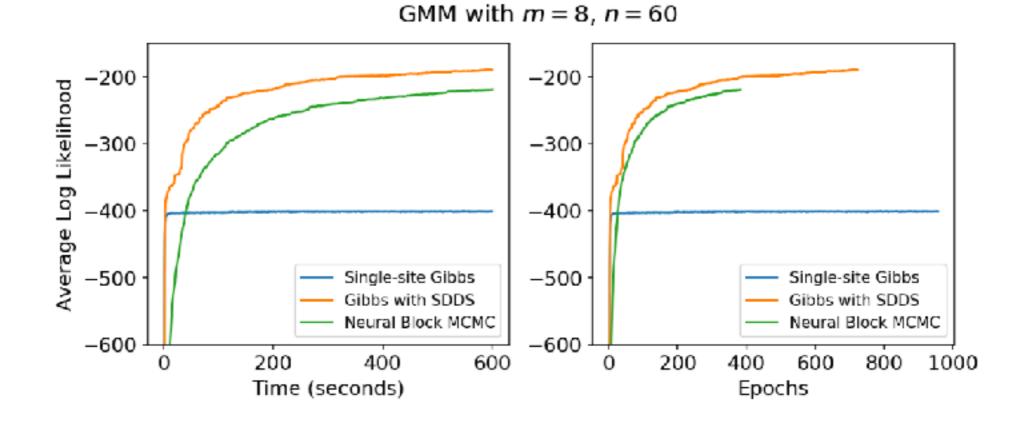
Compare with exact block Gibbs proposal



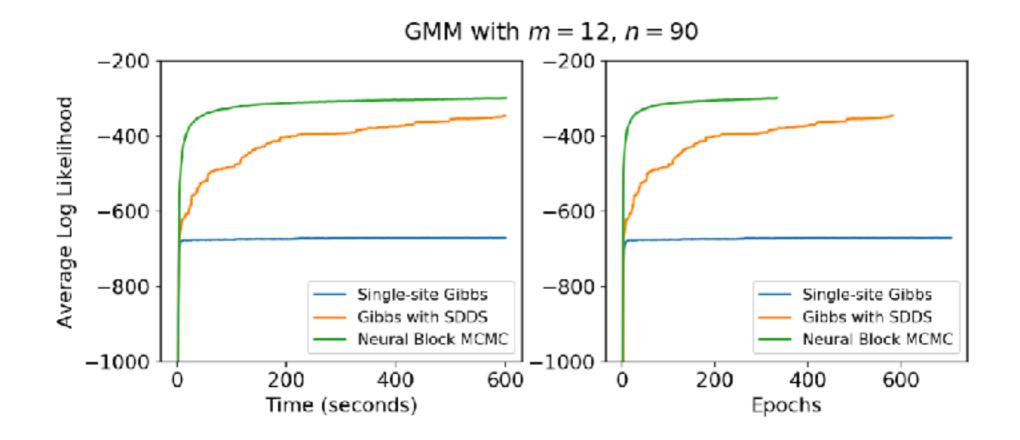
- Task: infer mixture means μ_j given data points x_i
- For simplicity, we marginalize label variables z_i
- Motif: propose two μ_j conditioned on x_i and other μ_j



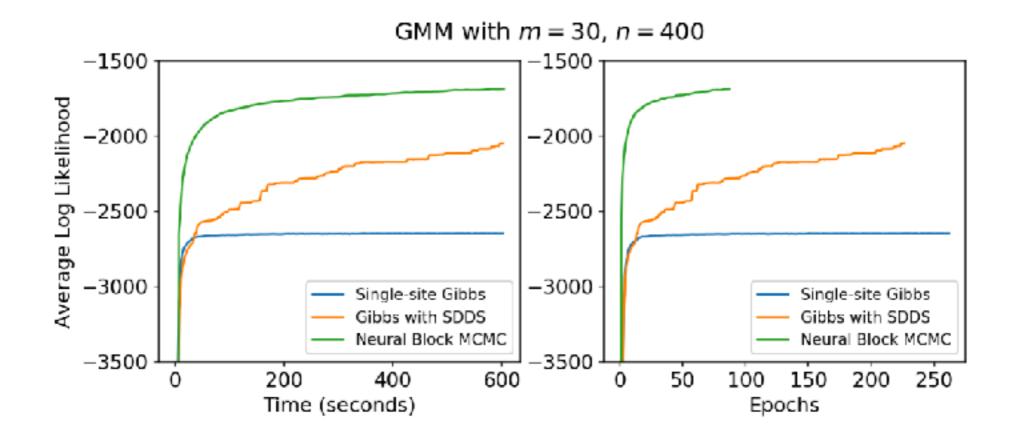
- Train on small GMM
- Test on GMMs of various sizes
- Compare Gibbs with SDDS split-merge moves



- Train on small GMM
- Test on GMMs of various sizes
- Compare Gibbs with SDDS split-merge moves

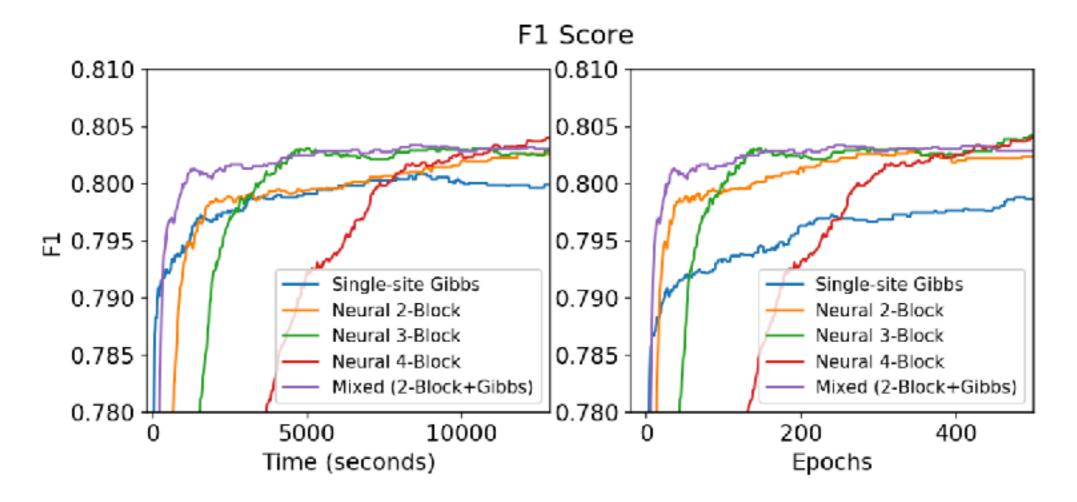


- Train on small GMM
- Test on GMMs of various sizes
- Compare Gibbs with SDDS split-merge moves



Named Entity Recognition

- Task: infer NER labels given natural language sentence
- One way to solve NER is conditional random field (CRF)
- After a CRF is learned, MCMC is used to infer the NER tags for new sentences



Conclusion

- Pros:
 - 1. Enables training a library of expert samplers
 - 2. Applicable to a wide range of probabilistic models
- Cons:
 - 1. Hand-identified motifs
- Next steps:
 - 1. Automatically detect motifs and (adaptively) apply proposals
 - 2. Explore other network architectures: CNN, RNN, etc.