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Probabilistic Programming

Model-based probabilistic inference

Formal representation of models as sample-
generating programs, e.g.,

non-differentiable models with discrete variables
open-universe models

context-specific dependencies

Need black-box inference algorithms



Markov Chain Monte Carlo

Sample from target distribution p(x):

Construct a Markov chain with stationary
distribution p(x)

Random walk

Choice of MC has large impact on performance



MCMC Proposal

. Generic single variable proposal:

- slow mixing in models with tight coupling
- stuck in local optima

. Block proposal:

- computational cost

» often hand-engineered

- Given more structural information, construct good and general block
proposals?



Structural Motif
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Motif examples borrowed from slides by Martin Wainwright



Proposals for Structural Motifs
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Neural Block Proposals

Focus on a certain motif of interest

Use neural network to approximate Gibbs block proposal:

local params U Markov blanket values — block proposal distribution
O—0F0=0300
Proposal parametrized as a mixture distribution [Bishop 94]

Train using prior samples to minimize expected KL divergence
Unlimited training data by sampling from model

Target equivalent to maximize log likelihood of samples

No assumption on variables being discrete/continuous



Neural Block MCMC

Given:
A inference task on a graphical model

Hand-identified motifs and their instantiations in the model

1. Train/retrieve neural block proposals for these motifs

2. Run MCMC updates:
a. Propose using neural block proposals (if possible)

b. Accept/reject with MH rules



General Binary Grid BNs
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General Binary Grid BNs

. Test on 180 grid models from UAI 08 competition

- grid-k: k% deterministic dependency
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General Binary Grid BNs

Average Error

20x20 size grid-75 model (75-20-9)
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GMM with Unknown Number of Mixtures

#mixture M ~ Unif{1,2,...,m}
mixture means pj ~N(0,021) j=1,...,m

mixture valid indicator v|M ~ Unif{a € {0,1}": ) "a; = M}
j
data label zi|[v ~ Unif{j: v; = 1} i=1,...,n

data point wi|zi, o ~ N (s, 0%1) i=1,...,n

Task: infer mixture means u; given data points z;

i

For simplicity, we marginalize label variables z;

Motif: propose two pjconditioned on x; and other u; '

-----



GMM with Unknown Number of Mixtures

- Train on small GMM
- Test on GMMs of various sizes

- Compare Gibbs with SDDS split-merge moves

GMM with m=8, n=60
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GMM with Unknown Number of Mixtures

- Train on small GMM
- Test on GMMs of various sizes

- Compare Gibbs with SDDS split-merge moves

GMM with m=12, n=90
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GMM with Unknown Number of Mixtures

Train on small GMM
Test on GMMs of various sizes

Compare Gibbs with SDDS split-merge moves

GMM with m =30, n =400
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Named Entity Recognition

- Task: infer NER labels given natural language sentence
- One way to solve NER is conditional random field (CRF)

- After a CRF is learned, MCMC is used to infer the NER tags for new sentences
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Conclusion

Pros:
1. Enablestraining a library of expert samplers

2. Applicable to a wide range of probabilistic models

cons:

1. Hand-identified motifs

Next steps:
1. Automatically detect motifs and (adaptively) apply proposals

2. Explore other network architectures: CNN, RNN, etc.



