Intelligent Agents via Representation Learning

by
Tongzhou Wang

B.A., University of California Berkeley (2017)
M.S., Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

(©2024 Tongzhou Wang. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored By: Tongzhou Wang
Department of Electrical Engineering and Computer Science
August 9, 2024

Certified By: Phillip Isola
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified By: Antonio Torralba
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted By: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Intelligent Agents via Representation Learning
by

Tongzhou Wang

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2024, in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Abstract

The effectiveness of deep learning is often attributed to the ability of neural net-
works to perform representation learning, a transformation that maps input data
into a vector representation (usually € R? with small d much lower than the data
dimension). Such representation spaces can reorganize data with inductive structures
(e.g., representation distances correlating with perceptual similarity) that make solv-
ing general new tasks much easier (e.g., groundtruth semantic classification function
is smoother w.r.t. a good representation space). This dissertation focuses on the core
skills of general intelligent agents—perception and decision making. We show how
these capabilities can be reduced to learning good representations that capture vari-
ous structures of the world. In particular, we solve reinforcement learning problems
via representation learning alone, thus making a step forward towards building intel-
ligent agents by learning good representations. Moreover, we study the convergent
trend of strong representations from different models and modalities, and propose the
Platonic Representation Hypothesis: stronger models better approximate a Platonic
representation fit to the structures of our reality. We argue that this representation is
a critical component in building better models and intelligent artificial agents. Finally,
we outline several future directions towards learning this Platonic representation via
pretraining and adaptation.

Thesis Supervisor: Phillip Isola
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

To Lexi, Wenjuan, Guangbin, Andrew, Tabby, and Mochi

Acknowledgments

My advisors, Phillip Isola and Antonio Torralba, taught me how to research, write,

present, and share.

When I first discussed graduate school with Phil in 2018, he told me he was shifting
focus from computer vision to artificial general intelligence (AGI). At that time, I had
worked with Phil remotely on a computer vision project for almost a year, but was
still pretty junior in research. So, I joined Phil’s lab. Phil gave us a lot of freedom
and was always excited to talk about Al, helping me gradually understand AGI and
form my research interests. I am really grateful to Phil for guiding me in Al research,
for introducing me to best practices for writing and presenting, and for helping me

become a better researcher.

I have always been amazed by Antonio’s constant stream of crazy yet cool ideas
and how often they turn out to be valuable and widely recognized. My first time
working with Antonio was in 2017, on Dataset Distillation, an idea of Antonio’s and
Alyosha Efros’. The goal was to compress datasets of hundreds of thousands of images
into just tens of images that are still effective in training neural networks. I submitted
it to three conferences over two years, each time with major improvements, but didn’t
get in any of them. However, that arXiv report is now my second most cited paper,
with over 550 citations and several workshops dedicated to this topic. Over my time
at MIT, I have heard many stories of Antonio’s ideas that no students wanted to work
on but turned out to be gold. Prospective students often ask me, “What topics does
Antonio focus on?” For many years, I didn’t know how to answer. Now I tell them,
“Antonio is the most curiosity-driven person I know; it feels fortunate and special to
work with him because that means working on some of the most unique and influential
ideas ahead of the field’s time.” It has changed my view of the world and enabled me

to explore things I never would have otherwise.

I would also like to thank my other committee members, Leslie Kaelbling and

Stefanie Jegelka.

Throughout my PhD, I have learned so much from Leslie about big problems in

decision-making and different approaches to it. Leslie was one of the instructors for the
Embodied Intelligence seminar that first properly introduced me to decision-making.
Leslie has always been nice, patient, and extremely sharp, making time to meet me
whenever I needed advice for research and career. I am grateful for the discussions we
had and the advice Leslie gave me.

I first learned about Stefanie’s lab when I visited MIT as a prospective admitted
student. I did not come during the regular visit days, but Stefanie still made an effort
to arrange a meeting for me with her lab, even though she was on leave at the time. The
lab was focusing on many interesting topics such as learning dynamics and expressive
power. What was most inspiring to me was the many mathematically-grounded yet
practical insights Stefanie’s research produced. Over my time at MIT, I gladly found
my research increasingly overlapping with Stefanie’s works on representation learning.
[am fortunate and thankful to have learned so much from Stefanie and her students
over many impromptu discussions.

My gratitude also goes to the many collaborators I have had throughout my PhD.
I have had fantastic collaborators with whom I wrote many papers over many years.
I've also had many great short collaboration experiences that I truly enjoyed. I learned
something exciting from each of my collaborators, without whom none of my research
would be possible. For that, [am truly grateful.

There are many more people in the academic research community who helped my
research beyond academic collaborations. With others, I had stimulating conversations
that led to productive projects. I am really happy that I became a part of the research
community, and many thanks go to everyone who welcomed me and helped me grow.

I was fortunate to be a member of two labs at MIT. During my five and a half
years here, we had many wonderful events, from lab dinners to retreats. One of my
favorites is the Isola lab’s retreat to Arcadia. One night, we gathered around the
fire, drank wine, made marshmallows, forgot about specific research problems for a
moment, and talked about our lives and philosophical ideas. Each member adds a bit
of their own identity, making the labs a colorful, fun, and unique place to be.

In academic labs, people come and go. At the time of my graduation, my labs are

composed of mostly different members than when I joined five years ago. However,
even though the people are different, to some extent, the labs feel the same. Antonio,
Phillip, and Fern have spent a lot of effort to maintain a welcoming atmosphere where
everyone can achieve what they want. I am certain they will keep the labs a great
space for research and learning whenever I return to visit the Torralba lab and the

Isola lab.

I have made some of my best friends during my PhD. When I graduated from my
undergraduate degree and moved to New York City alone for work, I found it very
difficult to make friends, even harder to make good friends. I kept thinking about the
night before I left California and said goodbye to my friends, wishing I was closer to

them.

When I came for graduate school, I thought it would be just the same—hard to
make friends and I would still miss my old friends. Not soon after, I realized I was
very wrong both about research and friends. Graduate school has been a roller coaster
of stress, excitement, depression, and happiness. Through this roller coaster, I became
friends with the most amazing group of people I have met in my life. We talked for
hours about research and life late into the night, sometimes with a little alcohol to stay
hydrated. We were on the same emotional roller coaster of graduate school, helped
each other, and shared important life moments, including my wedding. I will always
cherish the time we spent together. Many of my PhD friends and pre-PhD friends are

in California. I look forward to moving there and seeing them frequently again.

Being an international student with a 12-hour time difference from home has not
been easy. Fortunately, my family made efforts to visit me as much as they could.
Since starting my PhD in January 2019, I have not been back to China even once.
My family visited me in Hawaii, Boston, and California. Thank you, Mom, Dad, and
Andrew, for always being there and supporting me. Your love means a lot to me and
has made me who I am today.

Throughout the years, I have also received great love and support from my cousin’s

family and my wife’s parents. I showed them around Boston and enjoyed talking with

them either in person or via video chat.

Especially, I want to thank Lexi, my wife, and the most important person in
my life. Together we have shared many defining moments. For some time, we lived
separately, in different countries, then on different coasts, then in different cities, until
Lexi moved to Boston in 2020, in support of my PhD. Together we have lived and
traveled through many amazing places: Shanghai, Chengdu, Qingdao, Seattle, San
Francisco Bay Area, New York City, Williamsburg, Charlottesville, Washington DC,
Shenandoah, Acadia, Japan, and many more.

We spent many hours together doing fun activities—going to museums, enjoying
nature (especially the ocean), playing badminton, table tennis, and video games,
cooking, and eating great food. You made this life meaningful, worthwhile, and so
much more enjoyable, and it motivated me to do my best in life and work. Lexi, I am
forever grateful for your love and support, and I will continue to give my best support
and love to you.

My love also goes to our cats, Tabby and Mochi. They joined our family at the
height of the pandemic. In 2021, they arrived at our tiny apartment at just three
months old. At age three, they are now five times heavier, five times larger, and, I
really think, 20 times louder. There are numerous times I stayed late at the lab just
to enjoy some time without their constant "meows." I am pretty sure they reduced
my work efficiency by half, but I do not regret it one bit. They have brought so much
more love and happiness to us. Their carefree lifestyle is something I aspire to every
single day. The PhD would have been so much harder without them. I wish their lives
to be always healthy and full of love.

10

Contents

1 Introduction 23
1.1 Representations in Neural Networks 24
1.2 Dissertation Outline 25

1.2.1 Part I: Perception as Representation Learning 25
1.2.2 Part II: Decision-Making as Representation Learning 26
1.2.3 Part III: The Platonic Representation Hypothesis 29
I Perception as Representation Learning 31

2 Contrastive Representation Learning of Perceptual Relationships 33

2.1 Introduction 34

2.2 Related Work 36
2.3 Preliminaries on Unsupervised Contrastive Representation Learning . 37
2.4 Feature Distribution on the Hypersphere 39
2.4.1 Quantifying Alignment and Uniformity 41

2.4.2 Limiting Behavior of Contrastive Learning 44

2.5 Experiments 47
2.6 Discussiono 52

II Decision-Making as Representation Learning 55
3 Learning Representations of Quasimetric Distances 57
3.1 Imtroduction 58

3.2 Preliminaries on Quasimetrics and Poisson Processes 60

3.3 Quasimetric Learning L Lo o 61
3.3.1 Learning Algorithms and Hypothesis Spaces 62
332 AToy Example 63

3.4 Theoretical Analysis of Various Learning Algorithms 64
3.4.1 Distortion and Violation Metrics for Quasimetric Learning . . 65
3.4.2 Learning Algorithms Equivariant to Orthogonal Transforms . 66
3.4.3 Quasimetric Embeddingso 68

3.5 Poisson Quasimetric Embeddings (PQEs) 68
3.5.1 Distributions of Latent Quasipartitions 69
3.5.2 General PQE Formulation 71
3.5.3 Continuous-valued Stochastic Processes 72
3.5.4 Theoretical Guarantees 72
3.50.50 Experiments oo 73

3.6 Interval Quasimetric Embeddings (IQEs) 75
3.6.1 Evaluating IQE on Modelling Social Graphs 78
3.6.2 Theoretical Results on Universal Approximation 79

3.7 Related Work 80

3.8 Implicationso 82

Reinforcement Learning as Quasimetric Representation Learning 83

4.1 Introduction 83
4.2 Value Functions are Quasimetrics 87
4.2.1 Goal-Reaching Reinforcement Learning 87
4.2.2 Value-Quasimetric Equivalence 88
4.2.3 Quasimetric Modelsand RL 89
4.3 Quasimetric Reinforcement Learning 90
4.3.1 QRL Learns the Optimal Value Function 91
4.3.2 A Practical Implementation 93
4.3.3 Analyses and Comparisons via Discretized MountainCar 95

12

4.4
4.5

4.6

4.3.4 From V*to Q* and Policy 98

Related Worko 100
Benchmark Experiments 0L 102
4.5.1 Offline Goal-Reaching d4rl maze2d 103
4.5.2 Online Goal-Reaching RL 104
Implications 105

5 Denoised MDPs: Learning Latent World Models Better Than the

World Itself 107
5.1 Introduction 108

5.2 Different Types of Information in the Wild 111
5.2.1 Controllability 112

5.2.2 Reward-Relevance 113

5.2.3 Which Information Do Existing Methods Learn? 113

5.2.4 Possible Extensions to Further Factorizations 115

5.3 Denoised MDPso 116
54 Related Work 120
5.5 Experiments 122
5.5.1 RoboDesk with Various Noise Distractors 124

5.5.2 DeepMind Control Suite (DMC) 126

5.6 Implications 128
IIT The Platonic Representation Hypothesis 129
6 The Platonic Representation Hypothesis 131
6.1 Introduction 132
6.2 Representations are converging L. 134

6.2.1 Different models, with different architectures and objectives,

can have aligned representations 135
6.2.2 Alignment increases with scale and performance 138
6.2.3 Representations are converging across modalities 139

13

6.2.5 Does alignment predict downstream performance? 141
6.3 Why are representations converging? 142
6.3.1 Convergence via Task Generality 142
6.3.2 Convergence via Model Capacity 144
6.3.3 Convergence via Simplicity Bias 145
6.4 What representation are we converging to? 145
6.4.1 Anidealized world 146

6.4.2 A family of contrastive learners converge to a representation of

P(Z) . . . 147
6.5 What are the implications of convergence? 150
6.6 Counterexamples and limitations 152

7 Epilogue: Towards the Platonic Representation via Pretraining and

Adaptation 157
7.1 Understand what is missing in pretrained models 158
7.2 Adapt pretrained models 160
7.3 Intelligent agent = automating science? L. L. 161

A Proofs, Details, and Additional Discussions for Chapter 2 163
A.1 Proofs and Additional Theoretical Analysis 163
A.1.1 Proofs for Section 2.4.1 and Properties of Luniform - - - - - . . 164

A.1.2 Proofs and Additional Results for Section 2.4.2 171

A.2 Experiment Details 183
A.2.1 CIFAR-10, STL-10 and NYU-DEPTH-V2 Experiments . . . 183

A.2.2 IMAGENET and IMAGENET-100 with Momentum Contrast

(MoCo) Variants 186
A.2.3 BoOKCORPUS with Quick-Thought Vectors Variants 189
B Proofs, Details, and Additional Discussions for Chapter 3 217

14

B.1 Discussions for Section 3.2: Preliminaries on Quasimetrics and Poisson
Processes 217
B.1.1 Quasimetric Spaces 217
B.1.2 Poisson Processes L. 223

B.2 Proofs, Discussions and Additional Results for Section 3.4: Theoretical
Analysis of Various Learning Algorithms 227
B.2.1 Theorem 3.4.3: Distortion and Violation Lower-Bound General-

ization Erroro oo 229
B.2.2 Lemma 3.4.5: Examples of OrthEquiv Algorithms 230
B.2.3 Theorem 3.4.6: Failure of OrthEquiv Algorithms 234

B.3 Proofs and Discussions for Section 3.5: Poisson Quasimetric Embeddings
(PQES) o 255
B.3.1 Non-differentiability of Continuous-Valued Stochastic Processes 255
B.3.2 PQE-GG: Gaussian-based Measure and Gaussian Shapes . . . 256
B.3.3 Theoretical Guarantees for PQEs 259
B.3.4 Implementing Poisson Quasimetric Embeddings (PQEs) . . . 268

B.4 Experiment Settings and Additional Results 276
B.4.1 Experiments from Section 3.3.2: A Toy Example 276
B.4.2 Experiments from Section 3.5.5: Experiments 277

B.5 Deriving IQE From PQEo 298

B.6 Proofs for Section 3.6: Interval Quasimetric Embeddings (IQEs) . . . 299

Proofs, Details, and Additional Discussions for Chapter 4 301

C.1 Discussions and Generalizations of QRL 301

C.2 Proofs 302
C.2.1 Theorem 4.2.1: Value-Quasimetric Equivalence 302
C.2.2 Theorem 4.3.1: Exact Recovery 303
C.2.3 Theorem 4.3.2: Function Approximation 304

C.3 Experiment Details and Additional Results 308
C.3.1 Discretized MountainCar 309

C.3.2 Offline d4rlmaze2d 312

C.3.3 Online GCRL, 314

D Details and Additional Discussions for Chapter 5 319
D.1 Denoised MDP Discussions 319
D.1.1 Loss Derivation 0oL 319
D.1.2 Discussionso 320

D.2 Experiment Detailso 321
D.2.1 Implementation Details 321
D.2.2 Compute Resources 326
D.2.3 Visualization Details 327
D.2.4 RoboDesk Result Details 327
D.2.5 DeepMind Control Suite (DMC) Result Details 330

E Details and Additional Discussions for Chapter 6 337
E.1 Mutual k-Nearest Neighbor Alignment Metric 337
E.2 Consistency across various metrics 341
E.3 Experiments on Evaluating Alignment and Convergence 344
E.3.1 Vision-Vision Alignment and Representation Quality 344
E.3.2 Cross-Modal Alignment 345

E.4 Color Cooccurrence Experiment 346
E.5 Caption Density Experiments 348
E.6 Analysis of Contrastive Learners 349
E.6.1 Contrastive objectives learn pointwise mutual information . . 349

E.6.2 Contrastive learners can represent Kpy; exactly under smooth-

ness conditions 350

16

List of Figures

1-1
1-2
1-3

1-4
1-5

2-1

2-2
2-3
2-4
2-5
2-6
2-7

2-8
2-9

3-1
3-2
3-3

Similarity structure improves perception. 25
Distance structure guides agent to reach goals. 27
Abstraction structure enables robust decisions that are invariant to

noises and generalize to equivalent scenarios. 28
The Platonic Representation Hypothesis. 29

Recovering the Platonic representation from different sources (projections). 30

Alignment and uniformity of encoder feature distributions on the output

unit hypersphere. L oo 34
Well-cluster classes on the hypersphere are linearly separable. 35
Representations of CIFAR-10 validation set on S*. 40
Average pairwise (G potential as a measure of uniformity. 41

Metrics and performance of encoders on STL-10 and NYU-DEPTH-V2. 47
PyTorch implementation of L,jign and Lyniform- - - - - - -« o 47
Effect of optimizing different weighted combinations of L,jign and Lyniform

for STL-10. 50
Finetuning a STL-10 contrastive encoder with Lyjign and Lyniform- . . 51

Metrics and performance of encoders on IMAGENET-100 and BOOK-

CORPUS. .« . o o v it e s 52
Examples of quasimetric spaces. 59
Quasimetric learning example on a 3-element space. 63

[llustrative example where unconstrained neural networks fail to learn

quasimetrics. L. L 67

3-4

3-5

3-7

4-1

4-3
4-4
4-5

5-1

5-2

5-3

5-4

9-5
5-6

o-7

6-1
6-2

Comparison of PQE and baselines on quasimetric learning in random
directed graphs.o o 74
Offline Q-learning results with PQE and baseline architectures as Q-
function parametrizations. oo 76
Different latent quasimetrics diaent: « « - « « « « v e e e 76

Computing IQE quasimetric from latent v € R?*3 to latent v € R?*3, 78

Quasimetrics solves multi-goal RL. 86
QRL objective finds length of the shortest path connecting two states,

i.e., the optimal value V*. 91
Learned value functions on offline MountainCar from QRL and baselines. 94
Learning dynamics on offline MountainCar from QRL and baselines. 96

Online learning performance on GCRL benchmarks from QRL and
baselines. 102

Mlustrative example of four distinct kinds of information in decision-
making 109

Different structures on MDP transition dynamics and rewards can

identify different kinds of information 111

Kinds of information learned and removed by various decision-making
methods. 114
Visualization of learned models for RoboDesk by using decoders to
reconstruct from encoded latents. oL 122
RoboDesk policy optimization results. 125

Performance of finetuning various encoders to infer joint position from
RoboDesk image observation. 125

Visualization of the different DMC variants and factorizations learned

by TIA and Denoised MDP. 126
The Platonic Representation Hypothesis. 133
Vision models converge as competence increases. 136

18

6-3
6-4
6-5
6-6
6-7
6-8
6-9

A-2

B-1

B-2

B-3

B-4
B-5

B-7
B-8

Language and vision models align. 137

Alignment predicts downstream performance. 139
The Capacity Hypothesis. 142
The Multitask Scaling Hypothesis. 143
The Simplicity Bias Hypothesis. 146
Color cooccurrence in vision and language yields perceptual organization.147

Increasing caption density improves alignment. 153

Recovering the Platonic representation from different sources (projec-

tions). Figure is repeated from Figure 1-1. 158
Current LLMs fail to recognize invariances in game playing. 159
The BILLIARD-2D synthetic video dataset. 159

Asking a language model to use a new concept to improve game playing. 160
Learning an intelligent agent whose representations well captures the

reality is similar to the scientific study of the reality. 161

Asymptotic behavior of (F'(;a; 2). For z > 0, as a grows larger, the
function converges to 1. 170

Asymptotic behavior of optimal Lyniform(f%). - - -« L. 170

[lustrative example where unconstrained neural networks fail to learn
quasimetrics. 234
Empirical verification that unconstrained MLPs fail to learn quasimet-
rics on the illustrative example. 254
Continuous stochastic processes break differentiability in modeling
quasimetrics. e 255
An example of learning a 3-element quasimetric space. 276

Training different formulations to fit training pairs quasimetric distances.278

Approximating quasimetrics of a dense graph. 286
Approximating quasimetrics of a sparse graph. 287
Approximating quasimetrics of a sparse graph with block structure. . 288

19

B-9 Ablation studies of PQE-LH and PQE-GG on three random graphs. . 289
B-10 Grid-world offline Q-learning average planning success rates in the

environment shown right. o000 293
B-11 Grid-world offline Q-learning full results. 296
C-1 Online learning performance on GCRL benchmarks from QRL and

additional baselines. Lo oo 314
D-1 Effect of weight decay on RoboDesk joint position regression. 328
D-2 Performance of all TTA settings on RoboDesk joint position regression. 328
D-3 Training curve comparisons for the RoboDesk joint position regression

task across many training set sizes. 328
D-4 Performance comparison of finetuning from Denoised MDP encoders

and frame-stacked encoders on RoboDesk joint position regression. . . 329

D-5 Performance of all DBC settings on RoboDesk joint position regression. 329
D-6 Performance of all CURL settings on RoboDesk joint position regression.329
D-7 Performance of all PI-SAC settings on RoboDesk joint position regression.329
D-8 Complete policy optimization results on DMC. 333
D-9 Complete visualization of the different DMC variants and factorizations
learned by TTA and Denoised MDP. 334
D-10 Effect of choosing 5 in Denoised MDP. 335
E-1 Cross-modal alignment increases locally. 340
E-2 Comparative analysis of neural network similarity metrics. 342
E-3 Vision-vision alignment measured with various metrics. 343
E-4 Cross-modal alignment for various metrics (Figure 1 of 2). 353
E-5 Cross-modal alignment for various metrics (Figure 2 of 2). 354

20

List of Tables

2.1
2.2
2.3
24
2.5

3.1

3.2

4.1

4.2

5.1

Al
A2

A3
A4
A5

STL-10 encoder evaluations. 49
NYU-DEPTH-V2 encoder evaluations. 49
IMAGENET-100 encoder evaluations. 53
BOOKCORPUS encoder evaluations. 53

IMAGENET encoder evaluations with MoCo v2, and its variant with

‘Calign and [’uniform 53

Quasimetric learning on large-scale web graph. “Best” is selected by
test MSE w.r.t. 7-discounted distances. 75
Modeling the large-scale Berkeley-Stanford Web Graph with different

quasimetric models. 79

Goal-reaching control on MountainCar with QRL (using quasimetrics)
and baselines. 98

Goal-reaching planning on maze2d with QRL (using quasimetrics) and

baselines. 102
Deepmind Control Suite (DMC) policy optimization results. 125
NYU-DEPTH-V2 CNN depth predictor architecture. 185
100 randomly selected IMAGENET classes forming the IMAGENET-100

subset. . . .o 186
Specifications and results for all 304 STL-10 encoders. 192
Specifications and results for all 64 NYU-DEPTH-V2 encoders. 205

Specifications and results for all 45 IMAGENET-100 ResNet50 encoders. 208

21

A6

B.1
B.2

D.1
D.2
D.3
D4
D.5

Specifications and results for all 108 BOOKCORPUS encoders. 211

Quasimetric learning on the large-scale directed Berkeley-StanfordWebGraph.290

Metric learning on the large-scale undirected Youtube graph. 291

Categorization of various information in the evaluated environments. 321

Encoder architecture for (96 x 96)-resolution observation. 324
Decoder architecture for (96 x 96)-resolution observation. 324
Specific architecture parameters for model learning methods. 325
[choices for Denoised MDP results. 335

22

Chapter 1

Introduction

Modern machine learning systems are pipelines. Raw data is first transformed into
intermediate representations, often through the use of powerful pretrained neural
network models. These representations are then used for making complex decisions
in specific downstream tasks. Such pipelines are increasingly popular across various
domains, ranging from recommendation systems powered by learned embeddings of
users and products, to robotic control based on estimated 3D environment mapping.
In particular, this dissertation focuses on a particular complex pipeline—artificial
intelligence (AI) agents that use machine learning models to process various inputs
and to interact with the world with its decisions.

The deciding factor in such a complex system’s performance is its intermediate
representations from the learned neural networks. These representations geometri-
cally organize input data in a way that determines the effectiveness of learning and
decision-making on top of them. Indeed, large pretrained models that provide good
representations of data are already the cornerstones of modern machine learning.
Specialized systems, such as medical condition classifiers, are now usually built via
learning a prediction head on top of pretrained representations, along with possible
finetuning of the pretrained model (Steiner and Pilgrim, 2024; Xu et al., 2024).

The goal of this dissertation is to explore the extent that strong perceptual and
decision-making capabilities can be directly obtained from good represen-

tations without requiring much agent-specific or task-specific learning.

23

We study how the structure of learned representations can make downstream tasks
easy, and sometimes trivial. For example, a representation invariant to imperceptible
variations in model input greatly improves sample efficiency of solving perceptual
problems (e.g., image classification) (Chapter 2). A representation space where dis-
tances align with decision costs offers a powerful heuristic for planning behaviors over
long horizons (Chapters 3 and 4). Conversely, a poorly chosen structure may obscure
critical signals, and lead to a failed system (Chapter 5).

One important contribution of this dissertation is that we make the connection
between representation learning and reinforcement learning (or decision-making).
While many reinforcement learning methods have used auxiliary losses to promote
good representations (Ni et al., 2024; Laskin et al., 2020a; Zhang et al., 2020a), we
instead solve the reinforcement learning problem by representation learning alone
without any other objectives in Chapters 3 and 4. Furthermore, in Chapter 5, we
show that good representations can automatically identify the abstract easy-to-solve
reinforcement learning problems from the noisy complex world.

Perception and decision-making are core capabilities for building intelligent artificial
agents. After formulating them as representation learning tasks, we take one step
further, and hypothesize an ultimate representation that all strong machine learning
models are converging to, and that working towards learning this representation will

make the most important progress to intelligent agents (Chapter 6).

1.1 Representations in Neural Networks

In this dissertation, we restrict our attention to representations that are vector embed-
dings (i.e., latents) induces by neural networks (sometimes referred to as encoders).
Such neural networks are often pre-trained with supervised or self-supervised objec-
tives, such as a truncated classification network, or a next-token predictor transformer
network. In particular, for input data z € X and a neural network f: X — R", we
say that f(x) is the (vector) embedding of data x.

Our study focuses on the geometric structures induced by this embedding of f. For

24

example, the similarity between z; € X and x5 € X' can be defined as (f(z1), f(x2));
the distance between them can be defined as || f(x1) — f(22)|, (or d(f(z1), f(x2)) for
some non-Euclidean d). In other words, a neural network f defines a geometry over
data X in its representation space ; and learning f is essentially about identify the
desired geometry in a data-driven way. In this dissertation, we study the representation
geometric structures indued by neural networks, and how they relate to perception

and decision-making capabilities of artificial agents.

1.2 Dissertation Outline

The dissertation consists of three parts:
1. Part I: Perception as Representation Learning;
2. Part II: Decision-Making as Representation Learning;
3. Part III: The Platonic Representation Hypothesis.

We outline each part below in subsections.

1.2.1 Part I: Perception as Representation Learning

similar pair

classification

becomes easy
aircraft

vehicle

L

, structured representation
input data P

distance = perceptual similarity

Figure 1-1: Similarity structure improves perception.

25

Chapter 2: Contrastive Representation Learning of Perceptual Relationships
No image is an island. Perception requires contextualizing each piece of information
in its connection with the rest of the world through a graph of perceptual similarity,
co-occurrence, and other relationships (James, 1890; Isola, 2015b). However, these
relationships are tricky to model. Images with significant pixel variations can still be
perceived similarly (e.g., the similar pair in Figure 1-1).

We present a geometric approach to train and evaluate encoder models that
transform data to a structured representation space, where distance approximates
perceptual similarity and co-occurrence. These learned structures can enhance many
perception tasks, such as classification (Figure 1-1). We formulate perceptual relation-
ships with two quantifiable geometric properties of representation space: alignment,
which ensures related pairs map to nearby representations, and uniformity, which
preserves data information in the representation space. We show that downstream
performance strongly agrees with both geometric properties across diverse tasks in
vision and language. We conduct a geometric analysis of contrastive representation
learning, a method driving many recent advances like text-to-image synthesis. In
distinction from prior information-theoretic approaches, we prove that contrastive
learning essentially optimizes for alignment and uniformity with realistic assumptions

and empirical validations.

1.2.2 Part II: Decision-Making as Representation Learning

Chapters 3 and 4: Reinforcement Learning as Quasimetric Representation
Learning The machine learning revolution will not be single-task. Many recent
advances are powered by generalist systems whose behavior is controllable by user-
specified goals (e.g., instruction-following language models). For decision-making,
strategies for reaching different goals are not isolated. For example, knowing how to
“open fridge” makes it easy to “get milk”. Such dependencies highlight an important
asymmetric structure in decision-making, where some goals lead to others, but not vice
versa, due to the inherent asymmetry of our world (e.g., time and gravity). However,

previous decision-making methods often overlook such goal structures, resulting in

26

a B W
| goal-reaching
IE 5 | becomes easy

current state

.................................... optimal path
to reach goal

(env. geodesic)

geodesic \ ..

quasimetric geometry
target goal

structured representation

distance = cost to reach state

Figure 1-2: Distance structure guides agent to reach goals.

poor sample efficiency, or incorrectly assume symmetry, failing to make effective
decisions in the asymmetric world Chapter 5.

We use quasimetric geometry, the asymmetric relaxation of metric geometry, to
model decision-making structures. By accurately capturing decision costs among
different states, quasimetric geometry directly produces optimal goal-reaching agents
(Figure 1-2). We establishe learning foundations for quasimetrics (Chapter 4), and
develop a quasimetric-based algorithm that advanced the frontier of goal-reaching
agents (Chapter 5).

In particular, we address several key challenges in the modeling and learning of

quasimetric distance structures:

e Modeling (Chapter 3): We conduct the first learning-theoretical analyses on quasi-
metrics. With mathematical tools from extremal combinatorics, we prove that
quasimetrics are not learnable by the unconstrained neural network architectures
commonly used for goal-reaching decision-making. We designe new architectures
that encode data into a quasimetric representation space, with strong theoretical

guarantees and empirical performances.

e Learning (Chapter 4): 1 developed a decision-making algorithm that at its core
learns a quasimetric representation space to guide goal-reaching agents (Figure 1-2).

In distinction to common approaches, it is based on quasimetric geometry of the

27

decision-making problem, and efficiently learns optimal behavior from suboptimal
data with theoretical guarantees under diverse problem settings (e.g., continuous
action space). Over goal-reaching benchmarks, our algorithm robustly recovers
quasimetric structures of the environment, and beats prior art by 43% in performance

and by up to 3.9x in sample efficiency.

o i) 2

decision-making is robust
and generalizes better

structured representation
invariant to noise factors

agent observations
with task “open window”

Figure 1-3: Abstraction structure enables robust decisions that are invariant to noises and
generalize to equivalent scenarios.

Chapter 5: Denoised MDPs: Learning Latent World Models Better Than
the World Itself Abstract reasoning is key to intelligence. Even with a good
perceptual representation, autonomous agents are often provided more than enough
information for their task, and must extract task-specific signals from rich observations.
However, the typical framework for sequential decision making, Markov Decision
Process (MDP), models the entire agent observation in an unstructured way, and falls
short for any separation between signal and noise. To address these shortcomings, we
reformulate the MDP framework with a factorized model of agent observations. We
show that the factorization structure explicitly identifies information necessary for

optimal decision-making without loss of generality.

28

We develop an algorithm to extract such decision-critical signals via a structured
representation space (Figure 1-3) without requiring additional supervision. Our
method can denoise observations for any decision-making algorithm, yielding 25%-60%

performance gain on various benchmark tasks.

1.2.3 Part III: The Platonic Representation Hypothesis

The Platonic reality

One projection of reality
(i.e., modality/dataset)

A red sphere next
to a blue cone.

Another projection

| Feene
[T

Figure 1-4: The Platonic Representation Hypothesis: Neural networks, trained with
different objectives on different data and modalities, are converging to a shared statistical
model of reality in their representation spaces.

Chapter 6: The Platonic Representation Hypothesis Strong representations
can solve diverse tasks in perception and decision-making by capturing some funda-
mental statistical structures of the world (Chapters 2, 4 and 5). Do these have to be
different representations? Can one representation rule them all? We empirically study
the current best foundation models, and found that all strong models converge towards
the same way of representing the world regardless of data, objective, or modality. Based
on this convergence, we conjecture the Platonic Representation Hypothesis that this
unique representation captures the core (statistical) structure of the world by learning
on various projections (e.g., modalities, datasets) of it (Figure 1-4). Further more,
we argue that recovering this Platonic representations is an crucial part of building

intelligent agents that can solve diverse interactive tasks.

29

has info. of X

learning X statistics <= === Platonic representation

LLM

T T =

vision text control / reasoning
A red sphere next
‘ to a blue cone. {’O

Figure 1-5: Recovering the Platonic representation from different sources (projections). This
dissertation explored multiple parts of the arrows (bold and underlined).

We argue that working towards recovering the Platonic representation is one of the
most important future goals. This dissertation has explored various methods that allow
us to learn from individual projections (Figure 1-5). However, in order to combine
different sources, we must explore effective methods to integrate new information
into existing representations, and adapt them to more modalities/projections. In

Chapter 7, we propose several important questions in this aspect for future research.

30

Part 1

Perception as Representation

Learning

31

32

Chapter 2

Contrastive Representation Learning

of Perceptual Relationships

Contrastive representation learning has been outstandingly successful in practice. In
this chapter, we identify two key geometric properties related to the contrastive loss:
(1) alignment (closeness) of features from perceptually similar positive pairs, and (2)
uniformity of the induced distribution of the (normalized) features on the hypersphere.
We prove that, asymptotically, the contrastive loss optimizes these properties, and
analyze their positive effects on downstream tasks. Empirically, we introduce an
optimizable metric to quantify each property. Extensive experiments on standard
vision and language datasets confirm the strong agreement between both metrics and
downstream task performance. Directly optimizing for these two metrics leads to
representations with comparable or better performance at downstream tasks than

contrastive learning.

This chapter is based on published work:

1. Understanding Contrastive Representation Learning Through Alignment and
Uniformity on the Hypersphere with co-author Phillip Isola at the International
Conference on Machine Learning (ICML) 2020 (Wang and Isola, 2020).

33

« —=
Positive Pair : (- s —) ~ Dpos

| e .
z Y Feature Densit;
Alignment: Similar samples have similar Uniformity: Preserve maximal information.
features.

(Figure inspired by Tian et al. (2020b).)

Figure 2-1: Illustration of alignment and uniformity of feature distributions on the output
unit hypersphere. STL-10 (Coates et al., 2011) images are used for demonstration.

2.1 Introduction

A vast number of recent empirical works learn representations with a unit ¢, norm
constraint, effectively restricting the output space to the unit hypersphere (Parkhi
et al., 2015; Schroff et al., 2015; Liu et al., 2017; Hasnat et al., 2017; Wang et al., 2017;
Bojanowski and Joulin, 2017; Mettes et al., 2019; Hou et al., 2019; Davidson et al.,
2018; Xu and Durrett, 2018), including many unsupervised contrastive representation
learning methods (Wu et al., 2018; Bachman et al., 2019; Tian et al., 2020b; He et al.,
2019; Chen et al., 2020a).

Intuitively, having the features live on the unit hypersphere leads to several desirable
traits. Fixed-norm vectors are known to improve training stability in modern machine
learning where dot products are ubiquitous (Xu and Durrett, 2018; Wang et al., 2017).
Moreover, if features of a class are sufficiently well clustered, they are linearly separable
with the rest of feature space (see Figure 2-2), a common criterion used to evaluate

representation quality.

While the unit hypersphere is a popular choice of feature space, not all encoders
that map onto it are created equal. Recent works argue that representations should
additionally be invariant to unnecessary details, and preserve as much information

as possible (Oord et al., 2018; Tian et al., 2020b; Hjelm et al., 2018; Bachman et al.,

34

Figure 2-2: Hypersphere: When classes are well-clustered (forming spherical caps), they
are linearly separable. The same does not hold for Euclidean spaces.

2019). Let us call these two properties alignment and uniformity (see Figure 2-1).
Alignment favors encoders that assign similar features to similar samples. Uniformity
prefers a feature distribution that preserves maximal information, i.e., the uniform
distribution on the unit hypersphere.

In this work, we analyze the alignment and wuniformity properties. We show
that a currently popular form of contrastive representation learning in fact directly
optimizes for these two properties in the limit of infinite negative samples. We propose
theoretically-motivated metrics for alignment and uniformity, and observe strong
agreement between them and downstream task performance. Remarkably, directly
optimizing for these two metrics leads to comparable or better performance than
contrastive learning.

Our main contributions are:

e We propose quantifiable metrics for alignment and uniformity as two measures

of representation quality, with theoretical motivations.

e We prove that the contrastive loss optimizes for alignment and uniformity

asymptotically.

e Empirically, we find strong agreement between both metrics and downstream

task performance.

35

e Despite being simple in form, our proposed metrics, when directly optimized
with no other loss, empirically lead to comparable or better performance at

downstream tasks than contrastive learning.

2.2 Related Work

Unsupervised Contrastive Representation Learning has seen remarkable suc-
cess in learning representations for image and sequential data (Logeswaran and Lee,
2018; Wu et al., 2018; Oord et al., 2018; Hénaff et al., 2019; Tian et al., 2020b; Hjelm
et al., 2018; Bachman et al., 2019; Tian et al., 2020b; He et al., 2019; Chen et al.,
2020a). The common motivation behind these work is the InfoMax principle (Linsker,
1988), which we here instantiate as maximizing the mutual information (MI) between
two views (Tian et al., 2020b; Bachman et al., 2019; Wu et al., 2020). However, this
interpretation is known to be inconsistent with the actual behavior in practice, e.g.,
optimizing a tighter bound on MI can lead to worse representations (Tschannen et al.,
2019). What the contrastive loss exactly does remains largely a mystery. Analysis
based on the assumption of latent classes provides nice theoretical insights (Saunshi
et al., 2019), but unfortunately has a rather large gap with empirical practices: the re-
sult that representation quality suffers with a large number of negatives is inconsistent
with empirical observations (Wu et al., 2018; Tian et al., 2020b; He et al., 2019; Chen
et al., 2020a). In this chapter, we analyze and characterize the behavior of contrastive
learning from the perspective of alignment and uniformity properties, and empirically

verify our claims with standard representation learning tasks.

Representation learning on the unit hypersphere. Outside contrastive learn-
ing, many other representation learning approaches also normalize their features to
be on the unit hypersphere. In variational autoencoders, the hyperspherical latent
space has been shown to perform better than the Euclidean space (Xu and Durrett,
2018; Davidson et al., 2018). Directly matching uniformly sampled points on the

unit hypersphere is known to provide good representations (Bojanowski and Joulin,

36

2017), agreeing with our intuition that uniformity is a desirable property. Mettes et al.
(2019) optimizes prototype representations on the unit hypersphere for classification.
Hyperspherical face embeddings greatly outperform the unnormalized counterparts
(Parkhi et al., 2015; Liu et al., 2017; Wang et al., 2017; Schroff et al., 2015). Its
empirical success suggests that the unit hypersphere is indeed a nice feature space. In
this work, we formally investigate the interplay between the hypersphere geometry

and the popular contrastive representation learning.

Distributing points on the unit hypersphere. The problem of uniformly dis-
tributing points on the unit hypersphere is a well-studied one. It is often defined as
minimizing the total pairwise potential w.r.t. a certain kernel function (Borodachov
et al., 2019; Landkof, 1972), e.g., the Thomson problem of finding the minimal electro-
static potential energy configuration of electrons (Thomson, 1904), and minimization
of the Riesz s-potential (Gotz and Saff, 2001; Hardin and Saff, 2005; Liu et al., 2018).
The uniformity metric we propose is based on the Gaussian potential, which can be
used to represent a very general class of kernels and is closely related to the univer-
sally optimal point configurations (Borodachov et al., 2019; Cohn and Kumar, 2007).
Additionally, the best-packing problem on hyperspheres (often called the Tammes
problem) is also well studied (Tammes, 1930).

2.3 Preliminaries on Unsupervised Contrastive Rep-

resentation Learning

The popular unsupervised contrastive representation learning method (often referred
to as contrastive learning in this chapter) learns representations from unlabeled data.
It assumes a way to sample positive pairs, representing similar samples that should
have similar representations. Empirically, the positive pairs are often obtained by
taking two independently randomly augmented versions of the same sample, e.g. two
crops of the same image (Wu et al., 2018; Hjelm et al., 2018; Bachman et al., 2019;
He et al., 2019; Chen et al., 2020a).

37

Let pyata(-) be the data distribution over R™ and ppos(-,) the distribution of positive

pairs over R” x R™. Based on empirical practices, we assume the following property.

Assumption 2.3.1. Distributions pgata and ppos should satisfy

e Symmetry: Vz,y, ppos(x,y) :ppos(yax)'
e Matching marginal: V&, [ppos(,y) dy = pyata().

We consider the following specific and widely popular form of contrastive loss for
training an encoder f: R® — 8™ ! mapping data to £, normalized feature vectors
of dimension m. This loss has been shown effective by many recent representation
learning methods (Logeswaran and Lee, 2018; Wu et al., 2018; Tian et al., 2020b; He
et al., 2019; Hjelm et al., 2018; Bachman et al., 2019; Chen et al., 2020a).

Econtrastive(f; T, M) é

P S/ 91
E —log c — ’ (2.1)
(%,y)~Ppos ef(x)Tf(y)/T + Zz ef(xz)/

M iid.
{xi i=1 " Pdata

where 7 > 0 is a scalar temperature hyperparameter, and M € Z, is a fixed number
of negative samples.

The term contrastive loss has also been generally used to refer to various objectives
based on positive and negative samples, e.g., in Siamese networks (Chopra et al., 2005;
Hadsell et al., 2006). In this work, we focus on the specific form in Equation (2.1) that

is widely used in modern unsupervised contrastive representation learning literature.

Necessity of normalization. Without the norm constraint, the softmax distribu-
tion can be made arbitrarily sharp by simply scaling all the features. Wang et al.
(2017) provided an analysis on this effect and argued for the necessity of normalization
when using feature vector dot products in a cross entropy loss, as is in Eqn. (2.1).
Experimentally, Chen et al. (2020a) also showed that normalizing outputs leads to

superior representations.

38

The InfoMax principle. Many empirical works are motivated by the InfoMax
principle of maximizing I(f(z); f(y)) for (x,y) ~ ppos (Tian et al., 2020b; Bachman
et al., 2019; Wu et al., 2020). Usually they interpret Leontrastive i Eqn. (2.1) as a lower
bound of I(f(z); f(y)) (Oord et al., 2018; Hjelm et al., 2018; Bachman et al., 2019;
Tian et al., 2020b). However, this interpretation is known to have issues in practice,
e.g., maximizing a tighter bound often leads to worse downstream task performance
(Tschannen et al., 2019). Therefore, instead of viewing it as a bound, we investigate

the exact behavior of directly optimizing Leontrastive in the following sections.

2.4 Feature Distribution on the Hypersphere

The contrastive loss encourages learned feature representation for positive pairs
to be similar, while pushing features from the randomly sampled negative pairs
apart. Conventional wisdom says that representations should extract the most shared
information between positive pairs and remain invariant to other noise factors (Linsker,
1988; Tian et al., 2020b; Wu et al., 2020; Bachman et al., 2019). Therefore, the loss

should prefer two following properties:

e Alignment: two samples forming a positive pair should be mapped to nearby

features, and thus be (mostly) invariant to unneeded noise factors.

o Uniformity: feature vectors should be roughly uniformly distributed on the unit

hypersphere ™71, preserving as much information of the data as possible.

To empirically verify this, we visualize CIFAR-10 (Torralba et al., 2008; Krizhevsky

et al., 2009) representations on S' (m = 2) obtained via three different methods:
e Random initialization.

e Supervised predictive learning: An encoder and a linear classifier are jointly

trained from scratch with cross entropy loss on supervised labels.

e Unsupervised contrastive learning: An encoder is trained w.r.t. Leontrastive With

7 =0.5 and M = 256.

39

Alignment Uniformity
Positive Pair Feature Distances Feature Distribution Class 0 Class 3 Class 6 Class 9
[o= Mean 10 1.0 1.0 10 10
5000
05 05 05 05 05
4000 0.0 0.04 0.04 0.0 0.0
2
% 3000 - -05 -05 - fos tos tos
S . - - . -
2000 -10 - ~1.0 - f1.04 ~— |l ~— |l g
o -1 0 1 -1 0 1 -1 0 1 -1 0
1000 Features Features Features Features Features
£ 1000 100 \ ‘wo \ ‘100 k ‘100 \
s I / |
[Tl & o 0 0 0 0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 -2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2
I, Distances Angles Angles Angles Angles Angles
IR T
(a) Random Initialization. Linear classification validation accuracy: 12.71%.
Alignment Uniformity
Positive Pair Feature Distances Feature Distribution Class 0 Class 3 Class 6 Class 9
5000 . 10 1.0 1.0 1.0
Mean 1.0 - /
4000 05 05 05 05 05
0.0 0.0 0.0 0.0 0.0 !
£ 3000 \
S -0.5 -0.5 0.5 0.5 0.5
8 Y
2000 -1.0 -—r -10 - 1.0 . 1.0 1.0
-1 0 1
1000 Features Features Features Features Features
£ 1000 100 100 100 100
, [1“[,151«/&,\/\/\4 UL JM JTLA JUW |
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 -2 0 2
I, Distances Angles Angles Angles Angles Angles

(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.

Alignment

Positive Pair Feature Distances

Uniformity
Feature Distribution

5000

---- Mean

Class 0

Class 3

Class 6

Class 9

'

/\.

4000 0.5 / 0.5 0.5 0.5
0.0 0.04 0.0 0.0 0.0
2 3000
é L -0.5 / -0.5 Los Los Fo.5
o ~ /
2000 -10 — -1.04 FL04q FLo FLo
1 1 -1 0 -1 0 1
1000 Features Features Fea(ures Features Features
g 1000 100 100 100
mhmﬁgw J;g LMOL Y[]
900 025 050 075 1.00 125 150 175 2.00 -2 [2 -2 0 2
I, Distances Angles Angles Angles Angles Angles

(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Figure 2-3: Representations of CIFAR-10 validation set on S!. Alignment analysis: We
show distribution of distance between features of positive pairs (two random augmentations).
Uniformity analysis: We plot feature distributions with Gaussian kernel density estimation
(KDE) in R? and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, z) for each point
(z,y) € S'). Four rightmost plots visualize feature distributions of selected specific classes.
Representation from contrastive learning is both aligned (having low positive pair feature
distances) and uniform (evenly distributed on S').

All three encoders share the same AlexNet based architecture (Krizhevsky et al., 2012),
modified to map input images to 2-dimensional vectors in S*. Both predictive and
contrastive learning use standard data augmentations to augment the dataset and
sample positive pairs.

Figure 2-3 summarizes the resulting distributions of validation set features. Indeed,
features from unsupervised contrastive learning (bottom in Figure 2-3) exhibit the
most uniform distribution, and are closely clustered for positive pairs.

We present

The form of the contrastive loss in Eqn. (2.1) also suggests this.

informal arguments below, followed by more formal treatment in Section 2.4.2. From

40

0.4-vMF([1, 0], k = 10%)+ 0.6-VMF([0, - 1], k=1)
Random Initialization Samples Supervised Predictive Learning Unsupervised Contrastive Learning Uniform Distribution Samples

10 10 10 1.0 1.0
. ’

0.5 0.8474 0.5 0.5 0.5 / 0.5

] 0.0 0.0

0.0 0.0
\
-05 / -05

-0.5 -0.5 -0.5

-10 — -10 \-/ 03439 -10 - -10 — -10
-1 0 1 1 0.2380 1 1
Features Features Features Features iy Features o200
g 1000 u 1000 u 1000 u 1000 3 1000
s] E@ m @ : E
o o U 0 U 0 U 0 o
-2 o 2
Angles Average G; Ar\gles Average G; Ar\gles Average G; Angles Average G, Ang\es Average G,

Figure 2-4: Average pairwise G potential as a measure of uniformity. Each plot shows 10000
points distributed on S!, obtained via either applying an encoder on CIFAR-10 validation
set (same as those in Figure 2-3) or sampling from a distribution on S!, as described in plot
titles. We show the points with Gaussian KDE and the angles with vMF KDE.

the symmetry of p, we can derive

Econtrastive(f; 7-7 M) = E [_f(m)Tf(y)/T]

(@,y)~Ppos

LK log (&/ @0/ 4§ ST

(m y)”“ppos
d.
{CE }M S Pdata

Because the), ef @ @)/T term is always positive and bounded below, the loss favors
smaller E [—f(m)Tf(y)/T}, i.e., having more aligned positive pair features. Suppose
the encoder is perfectly aligned, i.e., P[f(z) = f(y)] = 1, then minimizing the loss is

equivalent to optimizing
1/7' YT f(z)/7
{xi_}'f\ill'k’d-pdata

which is akin to maximizing pairwise distances with a LogSumExp transformation.

Intuitively, pushing all features away from each other should indeed cause them to be

roughly uniformly distributed.

2.4.1 Quantifying Alignment and Uniformity

For further analysis, we need a way to measure alignment and uniformity. We propose

the following two metrics (losses).

41

Alignment

The alignment loss is straightforwardly defined with the expected distance between

positive pairs:

Laign(fr0) = E [If(z) = fW)ll], a>0.

() ~Ppos
Uniformity

We want the uniformity metric to be both asymptotically correct (i.e., the distribution
optimizing this metric should converge to uniform distribution) and empirically
reasonable with finite number of points. To this end, we consider the Gaussian potential
kernel (also known as the Radial Basis Function (RBF) kernel) G;: 8¢ x 8% — R,
(Cohn and Kumar, 2007; Borodachov et al., 2019):

A —t|lu—v|? wTo—
Gt(u,v) 2, tlu—v||5 :€2tu v 2t7 > 0’

and define the uniformity loss as the logarithm of the average pairwise Gaussian
potential:

Euniform(f; t) é IOg E [Gt(uv U)]

ii.d.
Z,Y ~ Pdata

—log E [e—tl\f(w)—f(y)H%’ £ 0.

i.i.d.
Z,Y ™~ Pdata

The average pairwise Gaussian potential is nicely tied with the uniform distribution

on the unit hypersphere.

Definition 2.4.1 (Uniform distribution on §%). ¢, denotes the normalized surface

area imeasure on Sd.

First, we show that the uniform distribution is the unique distribution that minimize

the expected pairwise potential.

Proposition 2.4.2. For M(S%) the set of Borel probability measures on 8¢, oy is

42

the unique solution of

,uer/{l/ll%‘d //Gt u,v) dpdp.

Proof. See Appendix A.1.1. m

In addition, as number of points goes to infinity, distributions of points minimizing
the average pairwise potential converge weak* to the uniform distribution. Recall the

definition of the weak* convergence of measures.

Definition 2.4.3 (Weak* convergence of measures). A sequence of Borel measures
{pn}22; in R? converges weak* to a Borel measure p if for all continuous function

f: R — R, we have
ti [o) dpale) = [7o) duta

Proposition 2.4.4. For each N > 0, the N point minimizer of the average pairwise

potential is

uy = argmin Z Gi(ug, uj).

wL,u2,...,u N ESY 1<i<j<N
The normalized counting measures associated with the {u} }3_; sequence converge

weak™ to oy.
Proof. See Appendix A.1.1. O

Designing an objective minimized by the uniform distribution is in fact nontrivial.
For instance, average pairwise dot products or Euclidean distances is simply optimized
by any distribution that has zero mean. Among kernels that achieve uniformity at
optima, the Gaussian kernel is special in that it is closely related to the universally
optimal point configurations and can also be used to represent a general class of
other kernels, including the Riesz s-potentials. We refer readers to Borodachov et al.
(2019) and Cohn and Kumar (2007) for in-depth discussions on these topics. Moreover,
as we show below, Lniform, defined with the Gaussian kernel, has close connections

with ﬁcontrastive-

43

Empirically, we evaluate the average pairwise potential of various finite point
collections on St in Figure 2-4. The values nicely align with our intuitive understanding
of uniformity.

We further discuss properties of Lyniform and characterize its optimal value and

range in Appendix A.1.1.

2.4.2 Limiting Behavior of Contrastive Learning

In this section, we formalize the intuition that contrastive learning optimizes alignment
and uniformity, and characterize its asymptotic behavior. We consider optimization
problems over all measurable encoder functions from the pq.:, measure in R™ to the
Borel space S™71L.

We first define the notion of optimal encoders for each of these two metrics.

Definition 2.4.5 (Perfect Alignment). We say an encoder f is perfectly aligned if

f(z) = f(y) as. over (2,y) ~ Dpos-

Definition 2.4.6 (Perfect Uniformity). We say an encoder f is perfectly uniform if

the distribution of f(z) for & ~ pgata is the uniform distribution o, ; on S™~1.

Realizability of perfect uniformity. We note that it is not always possible to
achieve perfect uniformity, e.g., when the data manifold in R” is lower dimensional
than the feature space S™~'. Moreover, in the case that pya, and Dpos are formed from
sampling augmented samples from a finite dataset, there cannot be an encoder that is
both perfectly aligned and perfectly uniform, because perfect alignment implies that
all augmentations from a single element have the same feature vector. Nonetheless,
perfectly uniform encoder functions do exist under the conditions that n > m — 1 and
Pdata has bounded density.

We analyze the asymptotics with infinite negative samples. Existing empirical
work has established that larger number of negative samples consistently leads to
better downstream task performances (Wu et al., 2018; Tian et al., 2020b; He et al.,

2019; Chen et al., 2020a), and often uses very large values (e.g., M = 65536 in He et al.

44

(2019)). The following theorem nicely confirms that optimizing w.r.t. the limiting loss

indeed requires both alignment and uniformity.

Theorem 2.4.7 (Asymptotics of Leontrastive). For fixed 7 > 0, as the number of
negative samples M — oo, the (normalized) contrastive loss converges to

hm Econtrastive(f; 7-7 M) - IOg M =

M—o0
1

LB [wTrw]+ E [mg E [eﬂwﬂﬂwvﬂ.

T (,Y)~Ppos T~~Pdata T ~Pdata

(2.2)

We have the following results:
1. The first term is minimized iff f is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

3. For the convergence in Equation (2.2), the absolute deviation from the limit

decays in O(M~1/2).

Proof. See Appendix A.1.2. O]

Relation with L, niform- The proof of Theorem 2.4.7 in the Appendix A.1.2
connects the asymptotic Leontrastive fOorm with minimizing average pairwise Gaussian
potential, i.e., minimizing L,niform- Compared with the second term of Equation (2.2),
Luniform €ssentially pushes the log outside the outer expectation, without changing the
minimizer (perfectly uniform encoders). However, due to its pairwise nature, Lyniform
is much simpler in form and avoids the computationally expensive softmax operation
in Leontrastive (Goodman, 2001; Bengio et al.; Gutmann and Hyvérinen, 2010; Grave

et al., 2017; Chen et al., 2018).

Relation with feature distribution entropy estimation. When py., is uniform
over finite samples {x1,22,...,2x} (e.g., a collected dataset), the second term in

Equation (2.2) can be alternatively viewed as a resubstitution entropy estimator of

45

f(z) (Ahmad and Lin, 1976), where z follows the underlying distribution ppature that

generates {x;}Y |, via a von Mises-Fisher (vMF) kernel density estimation (KDE):

L~Pdata T ~Pdata

N N
D {bg E [ef (I‘>Tf<ff>/f]] — %Zlog (% Zefmff(xj)/f)
=1 j=1
1 N
- N ; log pumr-kpe(f (7)) + log Zumr

£ —f[(f(a:)) —|—10g ZVMF; X ™~ Dnature
£ —j($, f(ﬂj)) + log ZVMF, T ~ Pnature;

where

e puvr-kpe is the KDE based on samples {f(a:j)}j-v:l using a vMF kernel with
k=711

e Z,ur is the normalization constant for vMF distribution with x = 771,

e H denotes the resubstitution entropy estimator,

e [denotes the mutual information estimator based on H , since f is a deterministic

function.

Relation with the InfoMax principle. Many empirical works are motivated
by the InfoMax principle, i.e., maximizing I(f(z); f(y)) for (x,y) ~ ppos- However,
the interpretation of Leontrastive @s & lower bound of I(f(z); f(y)) is known to be
inconsistent with its actual behavior in practice (Tschannen et al., 2019). Our
results instead analyze the properties of Leontrastive itself. Considering the identity
I(f(x); fly)) = H(f(z)) — H(f(x) | f(y)), we can see that while uniformity indeed
favors large H(f(z)), alignment is stronger than merely desiring small H(f(x) | f(y)).
In particular, both Theorem 2.4.7 and the above connection with maximizing an
entropy estimator provide alternative interpretations and motivations that Lcontrastive
optimizes for aligned and information-preserving encoders.

Finally, even for the case where only a single negative sample is used (i.e., M = 1),

we can still prove a weaker result, which we describe in details in the Appendix A.1.2.

46

Linear Classification on Outputs 5-NN Classification on fc7 Depth Prediction on conv5

85 85 0.80
2001 o + Leontrastive ONlY 2001 o + Leontrastive ONlY 2.00 4+ Leonrastive ONlY
1754 ® Lalign: Luniform ONly 80 1754 ® Lalign: Luniform ONly 80 175 ® Laign: Luniform 0Ny
® A Allthree mixed Y A Allthree mixed : 4 Al three mixed 078
1.50 1 o, 75 1.50 1 =, 75 1.50
N 125 > N 1254 [S 1.25
I 708 708 O 076 ,
H 5 < [w
3 1.00 g3 & 100 8 & 100 =
< < 5 < < K
2 655 2 655 2 > s
< 0.754 > g 075 > 5 075 . 0.74
0501 60 0501 60 0.50
\ . . 0.72
0.25 o,a 1§ 55 0.25 H 55 0.25
0.00 - 0.00 . 0.00 X}
- - - - - 50 - - - - - 50 0.70
-4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0
Luyniform(t = 2) Lyniform(t =2) Luniform(t=2)

(a) 304 STL-10 encoders are evaluated with linear classification on (b) 64 NYU-DEPTH-V2 encoders
output features and 5-nearest neighbor (5-NN) on fc7 activations. are evaluated with CNN depth
Higher accuracy (blue color) is better. regressors on convb activations.

Lower MSE (blue color) is better.

Figure 2-5: Metrics and performance of STL-10 and NYU-DEPTH-V2 experiments. Each
point represents a trained encoder, with its - and y-coordinates showing Lajign and Luyniform
metrics and color showing the performance on validation set. Blue is better for both tasks.
Encoders with low Lyjign and Lyniform are consistently the better performing ones (lower left
corners).

latents for the other side of positive pairs
lam : hyperparameter balancing the two losses

bsz : batch size (number of positive pairs)
#d : latent dim

x : Tensor, shape=[bsz, d]

latents for one side of positive pairs
#y . Tensor, shape=[bsz, d]

#

#

def lalign(x, y, alpha=2):
return (x - y).norm(dim=1).pow(alpha).mean()

def lunif(x, t=2):
sq_pdist = torch.pdist(x, p=2).pow(2)
return sq_pdist.mul(-t).exp().mean().log()

loss = lalign(x, y) + lam * (lunif(x) + lunif(y)) / 2

Figure 2-6: PyTorch implementation of Lyjign and Lyniform-
2.5 Experiments

In this section, we empirically verify the hypothesis that alignment and uniformity

are desired properties for representations. Recall that our two metrics are

Latign(f3 @) 2 Eeyyopes 1 (@) = F()]5]
Lunitorm(f31) 21og B 110 [e*tllf(x)ff(y)u%

Z,Y ~ Pdata

We conduct extensive experiments with convolutional neural network (CNN) and

recurrent neural network (RNN) based encoders on four popular representation learning

47

benchmarks with distinct types of downstream tasks:

e STL-10 (Coates et al., 2011) classification on AlexNet-based encoder outputs

or intermediate activations with a linear or k-nearest neighbor (k-NN) classifier.

e NYU-DEPTH-V2 (Nathan Silberman and Fergus, 2012) depth prediction on

CNN encoder intermediate activations after convolution layers.

e IMAGENET and IMAGENET-100 (random 100-class subset of IMAGENET) clas-

sification on CNN encoder penultimate layer activations with a linear classifier.

e BOOKCORPUS (Zhu et al., 2015) RNN sentence encoder outputs used for Moview
Review Sentence Polarity (MR) (Pang and Lee, 2005) and Customer Product
Review Sentiment (CR) (Wang and Manning, 2012) binary classification tasks

with logisitc classifiers.

For image datasets, we follow the standard practice and choose positive pairs as
two independent augmentations of the same image. For BOOKCORPUS, positive pairs
are chosen as neighboring sentences, following Quick-Thought Vectors (Logeswaran
and Lee, 2018).

We perform majority of our analysis on STL-10 and NYU-DEPTH-V2 encoders,
where we calculate Lcontrastive With negatives being other samples within the minibatch
following the standard practice (Hjelm et al., 2018; Bachman et al., 2019; Tian et al.,
2020b; Chen et al., 2020a), and Lyniform as the logarithm of average pairwise feature
potentials also within the minibatch. Due to their simple forms, these two losses can
be implemented in PyTorch (Paszke et al.; 2019) with less than 10 lines of code, as
shown in Figure 2-6.

To investigate alignment and uniformity properties on recent contrastive learning
methods and larger datasets, we also analyze IMAGENET and IMAGENET-100 encoders
trained with Momentum Contrast (MoCo) (He et al., 2019; Chen et al., 2020b), and
BOOKCORPUS encoders trained with Quick-Thought Vectors (Logeswaran and Lee,

2018), with these methods modified to also allow L,jign and Lyniform-

48

Validation Set Accuracy 1
Loss Formula

Output + Linear Output + 5-NN fc7 + Linear fc7 + 5-NN

Best Leontrastive only L contrastive(T=0.19) 80.46% 78.75% 83.89% 76.33%
Best Laiign and Lyniform only 0.98 - Lajign(=2) 4 0.96 - Lyniform (t=2) 81.15% 78.89% 84.43% 76.78%
Best among all encoders Lecontrastive(T=0.5) + Luyniform (t=2) 81.06% 79.05% 84.14% 76.48%

Table 2.1: STL-10 encoder evaluations. Numbers show linear and 5-nearest neighbor (5-NN)
classification accuracies on the validation set. The best result is picked by encoder outputs
linear classifier accuracy from a 5-fold training set cross validation, among all 150 encoders
trained from scratch with 128-dimensional output and 768 batch size.

Validation Set MSE |
Loss Formula

convh conv4

Best Leontrastive only 0.5 - Leontrastive(T=0.1) 0.7024 0.7575
Best Lalign and Luniform only 0.75 - Lyjign(@=2) + 0.5 - Luniform (t=2) 0.7014 0.7592
Best among all encoders 0.75 - Latign(a@=2) 4 0.5 - Luniform (t=2) 0.7014 0.7592

Table 2.2: NYU-DEPTH-V2 encoder evaluations. Numbers show depth prediction mean
squared error (MSE) on the validation set. The best result is picked based on convb layer
MSE from a 5-fold training set cross validation, among all 64 encoders trained from scratch
with 128-dimensional output and 128 batch size.

We optimize a total of 304 STL-10 encoders, 64 NYU-DEPTH-V2 encoders,
45 IMAGENET-100 encoders, and 108 BOOKCORPUS encoders without supervision.
The encoders are optimized w.r.t. weighted combinations of Leontrastive, Lalign, and/or

ﬁuniform 5 with VaI'Ying

e (possibly zero) weights on the three losses,

o temperature 7 for Leontrastive,

e ac {1,2} for Lyjgn,

o t €{1,2,...,8} for Lyniform,

e batch size (affecting the number of (negative) pairs for Leontrastive a0d Luniform),
e embedding dimension,

e number of training epochs and learning rate,

e initialization (from scratch vs. a pretrained encoder).

See Appendix A.2 for more experiment details and the exact configurations used.

49

Optimize (1 —A) * Laiign + A * Luniform

L4 Lot =2) (exp)
12 Laiign(a = 2)

= \/al accuracy
1.01
0.8 r,
0.6
0.4 1
0.2

-

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Lalign only 2 Luniform oNly

Figure 2-7: Effect of optimizing different weighted combinations of Lyjign(e=2) and
Luniform (t=2) for STL-10. For each encoder, we show the L,jign and Lyniform metrics, and
validation accuracy of a linear classifier trained on encoder outputs. Lniform is exponentiated
for plotting purposes.

Laiign and Lniform strongly agree with downstream task performance. For
each encoder, we measure the downstream task performance, and the Laiign, Luniform
metrics on the validation set. Figure 2-5 visualizes the trends between both metrics
and representation quality. We observe that the two metrics strongly agrees the
representation quality overall. In particular, the best performing encoders are exactly

the ones with low Lajign and Lyniform, %.¢€., the lower left corners in Figure 2-5.

Directly optimizing only L, and Lj,iform can lead to better representa-
tions. As shown in Tables 2.1 and 2.2, encoders trained with only Lyjign and Lyniform
consistently outperform their L.ontrastive-trained counterparts, for both tasks. Theo-
retically, Theorem 2.4.7 showed that Leontrastive Optimizes alignment and uniformity
asymptotically with infinite negative samples. This empirical performance gap suggests
that directly optimizing these properties can be superior in practice, when we can

only have finite negatives.

Both alignment and uniformity are necessary for a good representation.

Figure 2-7 shows how the final encoder changes in response to optimizing differently
weighted combinations of L,jign and Lyniform o0 STL-10. The trade-off between the
Laiign and Lyniform indicates that perfect alignment and perfect uniformity are likely

hard to simultaneously achieve in practice. However, the inverted-U-shaped accuracy

50

Finetune with 0.0025 - Lajign Finetune with 0.0005 - £niform Finetune with 0.025 - £;jign + 0.025 * Lypiform
1.0 1.04

109 — Lynom(t=2) (exp) —— Luniform(t =2) (exp) —— Luntorm(t=2) (exp)
Lalign(a =2) Laiign(a =2) Laign(a=2)

0.8 —— val accuracy 0.8 —— val accuracy — o 0.8 —— val accuracy

06 \ "]

0.4 0.4

0.6 4
0.4

0.2 024 0.2

x

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Finetune Epochs Finetune Epochs Finetune Epochs

Figure 2-8: Finetuning trajectories from a STL-10 encoder trained with Leontrastive using
a suboptimal temperature 7 = 2.5. Finetuning objectives are weighted combinations of
Lalign(a@=2) and Lyniform(t=2). For each intermediate checkpoint, we measure L,jign and
Luniform metrics, as well as validation accuracy of a linear classifier trained from scratch on
the encoder outputs. Lyniform 1S exponentiated for plotting purpose. Left and middle: Per-
formance degrades if only one of alignment and uniformity is optimized. Right: Performance
improves when both are optimized.

0.04 I —— 0.0 0.04

curve confirms that both properties are indeed necessary for a good encoder. When
Lalign is weighted much higher than Lniform, degenerate solution occurs and all inputs
are mapped to the same feature vector (exp Lyniform = 1). However, as long as the ratio
between two weights is not too large (e.g., < 4), we observe that the representation

quality remains relatively good and insensitive to the exact weight choices.

Laiign and Lniform causally affect downstream task performance. We take an
encoder trained with Leontrastive Using a suboptimal temperature 7 = 2.5, and finetune
it according to Lajign and/or Lyniform. Figure 2-8 visualizes the finetuning trajectories.
When only one of alignment and uniformity is optimized, the corresponding metric
improves, but both the other metric and performance degrade. However, when both
properties are optimized, the representation quality steadily increases. These trends
confirm the causal effect of alignment and uniformity on the representation quality,

and suggest that directly optimizing them can be a reasonable choice.

Alignment and uniformity also matter in other contrastive representation
learning variants. MoCo (He et al., 2019) and Quick-Thought Vectors (Logeswaran
and Lee, 2018) are contrastive representation learning variants that have nontrivial
differences with directly optimizing Leontrastive in Equation (2.1). MoCo introduces a

memory queue and a momentum encoder. Quick-Thought Vectors uses two different

51

Linear Classification on Penultimate Layer Moview Review Classification on Outputs Customer Review Classification on Outputs
+ Lcontrastive only 2.00 ' 2.00 -~
® Laiign, Luniform ONly 715 H 74 70
4 Allthree mixed 175 175

1.50 1.50

2)
°
=
<
S
o

N 125) 77
il
S 1.00 76
<

°
w
M
3
o
Val Accuracy
gn(@
=
o
8
M
3
Val Accuracy
Val Accuracy

El
Jo7s 75

@
©
@

@

©

o
o
@
S

&
s

kS i 050 .
01 + Leontrastive ONlY + Leontrastive ONlY
© Laigas Luniform ONlY 0257 o Laigns Lunitorm ONly 73
0 . 0.00] 4 Allthree mixed - 0004 4 Allthree mixed -
68.0 72

-4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0
Luniform(t=2) Luniform(t = 2) Luniform(t = 2)

(a) 45 IMAGENET-100 encoders (b) 108 BOOKCORPUS encoders are trained with Quick-Thought-

are trained with MoCo-based Vectors-based methods, and evaluated with logistic binary classifi-

methods, and evaluated with lin- cation on Movie Review Sentence Polarity and Customer Product

ear classification. Review Sentiment tasks.

@
®
@

Figure 2-9: Metrics and performance of IMAGENET-100 and BOOKCORPUS experiments.
Each point represents a trained encoder, with its z- and y-coordinates showing L,jig, and
L uniform metrics and color showing the validation accuracy. Blue is better. Encoders with
low Laiign and Lyniform consistently perform well (lower left corners), even though the training
methods (based on MoCo and Quick-Thought Vectors) are different from directly optimizing
the contrastive loss in Equation (2.1).

encoders to encode each sentence in a positive pair, only normalizes encoder outputs
during evaluation, and does not use random sampling to obtain minibatches. After
modifying them to also allow L,jign and Lyniform, We train these methods on IMAGENET-
100 and BOOKCORPUS, respectively. Figure 2-9 shows that L,jign and Lyniform metrics
are still correlated with the downstream task performances. Tables 2.3 and 2.4
show that directly optimizing them also leads to comparable or better representation
quality. Table 2.5 also shows improvements on full IMAGENET when we use L,jign
and Lyniform to train MoCo v2 (Chen et al.; 2020b) (an improved version of MoCo).
These results suggest that alignment and uniformity are indeed desirable properties
for representations, for both image and text modalities, and are likely connected with

general contrastive representation learning methods.

2.6 Discussion

Alignment and uniformity are often alluded to as motivations for representation
learning methods (see Figure 2-1). However, a thorough understanding of these

properties is lacking in the literature.

52

Validation Set Accuracy T
Loss Formula

topl topd
Best Leontrastive only Leontrastive (T=0.07) 72.80% 91.64%
Best Lajign and Lyniform only 3 - Lajign(@=2) 4+ Luniform (t=3) 74.60% 92.74%
Best among all encoders 3+ Laiign(@=2) + Luyniform (t=3) 74.60% 92.74%

Table 2.3: IMAGENET-100 encoder evaluations. Numbers show validation set accuracies of
linear classifiers trained on encoder penultimate layer activations. The encoders are trained
using MoCo-based methods. The best result is picked based on topl accuracy from a 3-fold
training set cross validation, among all 45 encoders trained from scratch with 128-dimensional
output and 128 batch size.

MR Classification CR Classification
Loss Formula Aysﬂmsg(; 1 Loss Formula Azfc(ﬂrds(:t 4
Best Leontrastive only Leontrastive(T7=0.075) 77.51% Leontrastive(T=0.05) 83.86%
Best Laiign and Luniform only 0.9 - Lajign(@=2) + 0.1 - Luniform (t=5) 73.76% 0.9 Latign(a@=2) + 0.1 - Lupitorm(t=5) 80.95%
Best among all encoders ﬁcontrastive(7=0~075) 77.51% Econtvastive(T:0~05) 83.86%

Table 2.4: BoOOKCORPUS encoder evaluations. Numbers show Movie Review Sentence
Polarity (MR) and Customer Product Sentiment (CR) validation set classification accuracies
of logistic classifiers fit on encoder outputs. The encoders are trained using Quick-Thought-
Vectors-based methods. The best result is picked based on accuracy from a 5-fold training set
cross validation, individually for MR and CR, among all 108 encoders trained from scratch
with 1200-dimensional output and 400 batch size.

Loss Formula Validation Set topl Accuracy 1

Lcontrastive (T = 02)

(o 07
(MoCo v2 Chen ct al. (2020b)) 67.5% +£0.1%

3 Latign(@=2) + Lynitorm(t=3) 67.69%

Table 2.5: IMAGENET encoder evaluations with MoCo v2, and its variant with L,};gn and
Luniform- MoCo v2 results are from the MoCo v2 official implementation (Chen et al., 2020c),
with mean and standard deviation across 5 runs. Both settings use 200 epochs of unsupervised
training.

53

Are they in fact related to the representation learning methods? Do they actually
agree with the representation quality (measured by downstream task performance)?

In this work, we have presented a detailed investigation on the relation between
these properties and the popular paradigm of contrastive representation learning.
Through theoretical analysis and extensive experiments, we are able to relate the
contrastive loss with the alignment and uniformity properties, and confirm their
strong connection with downstream task performances. Remarkably, we have revealed
that directly optimizing our proposed metrics often leads to representations of better
quality.

Below we summarize several suggestions for future work.

Niceness of the unit hypersphere. Our analysis was based on the empirical
observation that representations are often ¢, normalized. Existing works have moti-
vated this choice from a manifold mapping perspective (Liu et al., 2017; Davidson
et al., 2018) and computation stability (Xu and Durrett, 2018; Wang et al., 2017).
However, to our best knowledge, the question of why the unit hypersphere is a nice
feature space is not yet rigorously answered. One possible direction is to formalize the
intuition that connected sets with smooth boundaries are nearly linearly separable in
the hyperspherical geometry (see Figure 2-2), since linear separability is one of the
most widely used criteria for representation quality and is related to the notion of

disentanglement (Higgins et al., 2018).

Beyond contrastive learning. Our analysis focused on the relationship between
contrastive learning and the alignment and uniformity properties on the unit hyper-
sphere. However, the ubiquitous presence of ¢, normalization in the representation
learning literature suggests that the connection may be more general. In fact, several
existing empirical methods are directly related to uniformity on the hypersphere (Bo-
janowski and Joulin, 2017; Davidson et al., 2018; Xu and Durrett, 2018). We believe
that relating a broader class of representations to uniformity and/or alignment on the

hypersphere will provide novel insights and lead to better empirical algorithms.

54

Part 11

Decision-Making as Representation

Learning

95

56

Chapter 3

Learning Representations of

Quasimetric Distances

Our world is full of asymmetries. Gravity and wind can make reaching a place easier
than coming back. Social artifacts such as genealogy charts and citation graphs are
inherently directed. In reinforcement learning and control, optimal goal-reaching
strategies are rarely reversible (symmetrical). Distance functions supported on these
asymmetrical structures are called quasimetrics. Despite their common appearance,

little research has been done on the learning of quasimetrics.

Our theoretical analysis reveals that a common class of learning algorithms, includ-
ing unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric
consistent with training data. In contrast, our proposed Poisson Quasimetric Embed-
ding (PQE) is the first quasimetric learning formulation that both is learnable with
gradient-based optimization and enjoys strong performance guarantees. Experiments
on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness

over many common baselines.

This chapter is based on published works:

1. On The Learning and Learnability of Quasimetrics with co-author Phillip Isola
at the International Conference on Learning Representations (ICLR) 2022 (Wang
and Isola, 2022b);

57

2. Improved Representation of Asymmetrical Distances with Interval Quasimetric
Embeddings with co-author Phillip Isola at the Workshop on Symmetry and
Geometry in Neural Representations at NeurIPS 2022 (Wang and Isola, 2022a).

3.1 Introduction

Learned symmetrical metrics have been proven useful for innumerable tasks including
dimensionality reduction (Tenenbaum et al., 2000), clustering (Xing et al., 2002),
classification (Weinberger et al., 2006; Hoffer and Ailon, 2015), and information
retrieval (Wang et al., 2014). However, the real world is largely asymmetrical, and
symmetrical metrics can only capture a small fraction of it.

Generalizing metrics, quasimetrics (Definition 3.2.1) allow for asymmetrical dis-
tances and can be found in a wide range of domains (see Figure 3-1). Ubiquitous
physical forces, such as gravity and wind, as well as human-defined rules, such as
one-way roads, make the traveling time between places a quasimetric. Furthermore,
many of our social artifacts are directed graphs— genealogy charts, follow-relation
on Twitter (Leskovec and Krevl, 2014), citation graphs (Price, 2011), hyperlinks over
the Internet, etc. Shortest paths on these graphs naturally induce quasimetric spaces.
In fact, we can generalize to Markov Decision Processes (MDPs) and observe that
optimal goal-reaching plan costs (i.e., universal value/Q-functions (Schaul et al., 2015;
Sutton et al., 2011)) always form a quasimetric (Bertsekas and Tsitsiklis, 1991; Tian
et al., 2020a). Moving onto more abstract structures, quasimetrics can also be found
as expected hitting times in Markov chains, and as conditional Shannon entropy
H(-|-) in information theory. (See the appendix for proofs and discussions of these
quasimetrics.)

In this work, we study the task of quasimetric learning. Given a sampled training

set of pairs and their quasimetric distances, we ask: how well can we learn a quasimetric

that fits the training data? We define quasimetric learning in analogy to metric learning:

whereas metric learning is the problem of learning a metric function, quasimetric

learning is the problem of learning a quasimetric function. This may involve searching

58

Quasimetrics

Shortest Paths on
Directed Graphs

Time to Target Location
Under Gravity

Metrics 7

Euclidean {_{-
Distance 7~ "

{ ‘(J(Any Normed Space
w llx =1

Distance from state A Distance to state A
Conditional Entropy

50
40
30
r 20
10
H(-1-) Optimal Goal-Reaching = ®

Plan Costs in MDP:
an Go y Gridworld with One-way Doors

Figure 3-1: Examples of quasimetric spaces. The car drawing is borrowed from Sutton and
Barto (2018).

over a hypothesis space constrained to only include quasimetric functions (which is
what our method does) or it could involve searching for approximately quasimetric
functions (we compare to and analyze such approaches). Successful formulations
have many potential applications, such as structural priors in reinforcement learning
(Schaul et al., 2015; Tian et al., 2020a), graph learning (Rizi et al., 2018) and causal

relation learning (Balashankar and Subramanian, 2021).

Towards this goal, our contributions are

e We study the quasimetric learning task with two goals: (1) fitting training data

well and (2) respecting quasimetric constraints (Section 3.3);

e We prove that a large family of algorithms, including unconstrained networks
trained in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018), fail
at this task, while a learned embedding into a latent quasimetric space can

potentially succeed (Section 3.4);

e We propose Poisson Quasimetric Embeddings (PQEs), the first quasimetric
embedding formulation learnable with gradient-based optimization that also
enjoys strong theoretical guarantees on approximating arbitrary quasimetrics

(Section 3.5);

e Our experiments complement the theory and demonstrate the benefits of PQEs

on random graphs, social graphs and offline Q-learning (Section 3.5.5).

59

3.2 Preliminaries on Quasimetrics and Poisson Pro-
cesses

Quasimetric space is a generalization of metric space where all requirements of

metrics are satisfied, except that the distances can be asymmetrical.

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (X, d), where
X is a set of points and d: X x X — [0, 00| is the quasimetric, satisfying the following

conditions:

Ve,y € X, r=y < d(xz,y) =0, (Identity of Indiscernibles)

Ve, y,z € X, d(z,y) +d(y,z) > d(z, 2). (Triangle Inequality)

Being asymmetric, quasimetrics are often thought of as (shortest-path) distances
of some (possibly infinite) weighted directed graph. A natural way to quantify the
complexity of a quasimetric is to consider that of its underlying graph. Quasimetric

treewidth 1s an instantiation of this idea.

Definition 3.2.2 (Treewidth of Quasimetric Spaces (Mémoli et al., 2018)). Consider
a quasimetric space M as shortest-path distances on a positively-weighted directed

graph. Treewidth of M is the minimum over all such graphs’ treewidths.

Poisson processes are commonly used to model events (or points) randomly
occurring across a set A (Kingman, 2005) , e.g., raindrops hitting a windshield, photons
captured by a camera. The number of such events within a subset of A is modeled as
a Poisson distribution, whose mean is given by a measure p of A that determines how

“frequently the events happen at each location”.

Definition 3.2.3 (Poisson Process). For nonatomic measure p on set A, a Poisson
process on A with mean measure p is a random countable subset P C A (i.e., the

random events / points) such that

e for any disjoint measurable subsets Aq,..., A, of A, the random variables

N(Ay),...,N(A,) are independent, where N(B) = #{P N B} is the number

60

of points of P in B, and
e N(B) has the Poisson distribution with mean p(B), denoted as Pois(u(B)).
Fact 3.2.4 (Differentiability of P[/N(A4;) < N(Ay)]). For two measurable subsets

A17A27

P[N(A) < N(A2)] = B[Pois(u(4; \ A2)) < Pois(u(A: \ A))]. (3.1)

~
two independent Poissons

Furthermore, for independent X ~ Pois(u;), Y ~ Pois(u2), the probability P[X < Y]
is differentiable w.r.t. p; and po. In the special case where p; or us is zero, we can

simply compute

PO<Y]=1 if j1y = 0
PX <Y]= (Pois(0) is always 0)
PIX <0 =P[X=0=e" ifp=0

= eXp (—(Ml - M2)+) , (3.2)

where z+ £ max(0,x). For general p, po, this probability and its gradients can be
obtained via a connection to noncentral x? distribution (Johnson, 1959). We derive
the formulas in the appendix.

Therefore, if A; and A, are parametrized by some 6 such that p(A; \ Ay) and
w(Ay \ Ay) are differentiable w.r.t. 6, so is P[N(A4;) < N(Ag)].

3.3 Quasimetric Learning

Consider a quasimetric space (X,d). The quasimetric learning task aims to infer
a quasimetric from observing a training set {(x;,y;, d(z;,y;))}i C X x X x [0, 00].

Naturally, our goals for a learned predictor d: X x X = R are: respecting the quasi-

metric constraints and fitting training distances.

Crucially, we are not simply aiming for the usual sense of generalization, i.e.,
low population error. Knowing that true distances have a quasimetric structure,

we can better evaluate predictors and desire ones that fit the training data and are

61

(approximately) quasimetrics. These objectives also indirectly capture generalization
because a predictor failing either requirement must have large error on some pairs,
whose true distances follow quasimetric constraints. We formalize this relation in

Theorem 3.4.3.

3.3.1 Learning Algorithms and Hypothesis Spaces

Ideally, quasimetric learning should scale well with data, potentially generalize to
unseen samples, and support integration with other deep learning systems (e.g., via

differentiation).

Relaxed hypothesis spaces. One can simply learn a generic function approxi-
mator that maps the (concatenated) input pair to a scalar as the prediction of the
pair’s distance, or its transformed version (e.g., log distance). This approach has been
adopted in learning graph distances (Rizi et al., 2018) and plan costs in MDPs (Tian
et al.,; 2020a). When the function approximator is a deep neural network, we refer to
such methods as unconstrained networks. While they are known to fit training data
well (Jacot et al., 2018), in this paper we also investigate whether they learn to be

(approximately) quasimetrics.

Restricted hypothesis spaces. Alternatively, we can encode each input to a
latent space Z, where a latent quasimetric d, gives the distance prediction. This
guarantees learning a quasimetric over data space X. Often d, is restricted to a subset
unable to approximate all quasimetrics, i.e., an overly restricted hypothesis space,
such as metric embeddings and the recently proposed DeepNorm and WideNorm (Pitis
et al., 2020). While our proposed Poisson Quasimetric Embedding (PQE) (specified
in Section 3.5) is also a latent quasimetric, it can approximate arbitrary quasimetrics
(and is differentiable). PQE thus searches in a space that approximates all

quasimetrics and only quasimetrics.

62

Unconstrained Network Euclidean Space Embedding Poisson Quasimetric Embedding

(Training fwse = 0.02 + 0.06) (Training fuse = 58.83 + 0.00) (Training fuse = 0.02 + 0.07)
100 100
80 804
60 1 60]
40+ 40
Triangle inequality = 201] i 201 204
7 < d(a,b) +d(b,¢) =31 yaiq 0 0
? > d(a,b) — d(c,b) = 28 Range :-j :ﬂ :-j

Figure 3-2: Quasimetric learning on a 3-element space. Leftmost: Training set contains all
pairs except for (a ¢). Arrow labels show quasimetric distances (rather than edge weights).
A quasimetric d should predict d(a,c) € [28,30]. Right three: Different formulations
are trained to fit training pairs distances, and then predict on the test pair. Plots show
distribution of the prediction over 100 runs.

3.3.2 A Toy Example

To build up intuition on how various algorithms perform according to our two goals,
we consider a toy quasimetric space with only 3 elements in Figure 3-2. The space has
a total of 9 pairs, 8 of which form the training set. Due to quasimetric requirements
(esp. triangle inequality), knowing distances of these 8 pairs restricts valid values
for the heldout pair to a particular range (which is [28,31] in this case). If a model
approximates 8 training pairs well and respects quasimetric constraints well, its
prediction on that heldout pair should fall into this range.

We train three models w.r.t. mean squared error (MSE) over the training set using

gradient descent:

e Unconstrained deep network that predicts distance,
e Metric embedding into a latent Euclidean space with a deep encoder,

e Quasimetric embedding into a latent PQE space with a deep encoder (our

method from Section 3.5).

The three approaches exhibit interesting qualitative differences. Euclidean em-
bedding, unable to model asymmetries in training data, fails to attain a low training
error. While both other methods approximate training distances well, unconstrained
networks greatly violate quasimetric constraints; only PQEs respect the constraints
and consistently predicts within the valid range.

Here, the structural prior of embedding into a quasimetric latent space appears

63

important to successful learning. Without any such prior, unconstrained networks fail
badly. In the next section, we present a rigorous theoretical study of the quasimetric

learning task, which confirms this intuition.

3.4 Theoretical Analysis of Various Learning Algo-

rithms

In this section, we define concrete metrics for the two quasimetric learning objectives
stated above, and present positive and negative theoretical findings for various learning

algorithms.

Overview. Our analysis focuses on data-agnostic bounds, which are of great interests
in machine learning (e.g., VC-dimension (Vapnik and Chervonenkis, 2015)). We
prove a strong negative result for a general family of learning algorithms (including
unconstrained MLPs trained in NTK regime, k-nearest neighbor, and min-norm linear
regression): they may arbitrarily badly fail to fit training data or respect quasimetric
constraints (Theorem 3.4.6). Our informative construction reveals the core reason
of their failure. Quasimetric embeddings, however, enjoy nice properties as long as
they can approximate arbitrary quasimetrics, which motivates searching for “universal
quasimetrics”. The next section presents PQEs as such universal approximators and

states their theoretical guarantees.

Assumptions. We consider quasimetric spaces (X,d) with X C R?, finite size
n = |X| < oo, and finite distances (i.e., d has range [0,00)). It allows discussing deep
networks which can’t handle infinities well. This mild assumption can be satisfied
by simply capping max distances in quasimetrics. For training, m < n? pairs are
uniformly sampled as training pairs S C X x X without replacement.

In the appendix, we provide all full proofs, further discussions of our assump-
tions and presented results, as well as additional results concerning specific learning

algorithms and settings.

64

3.4.1 Distortion and Violation Metrics for Quasimetric Learn-
ing

We use distortion as a measure of how well the distance is preserved, as is standard
in embedding analyses (e.g., Bourgain (1985)). In this work, we especially consider
distortion over a subset of pairs, to quantify how well a predictor d approximates

distances over the training subset S.

Definition 3.4.1 (Distortion). Distortion of d over a subset of pairs S C X x X

is disg(d) = (maX(m7y)eg7w¢y dgzg) (maX(m,y)es’#y jgzz;), and its overall distortion is

dis(d) £ disxxx(d).

A

For measuring consistency w.r.t. quasimetric constraints, we define the (quasimet-
ric) violation metric. Violation focuses on triangle inequality, which can often be more
complex (e.g., in Figure 3-2), compared to the relatively simple non-negativity and

Identity of Indiscernibles.

Definition 3.4.2 (Quasimetric Violation). Quasimetric violation (violation for short)

d(Ah{ls)
(A1,A2)+d(A2,A3)’

where we define % = 1 for notation

7T . . 7 A
of d is vio(d) = maxa, A, Asex 7

simplicity.

Both distortion and violation are nicely agnostic to scaling. Furthermore, assuming
non-negativity and Identity of Indiscernibles, vio(ci) > 1 always, with equality iff dis a
quasimetric.

Distortion and violation also capture generalization. Because the true distance d
has optimal training distortion (on S) and violation, a predictor d that does badly on

either must also be far from truth.

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-
ror). For non-negative d, dis(d) > max(disg(d), V' vio(d)), where dis(d) captures gen-

eralization over the entire X’ space.

65

3.4.2 Learning Algorithms Equivariant to Orthogonal Trans-

forms

For quasimetric space (X, d), X C R% we consider applying general learning algorithms
by concatenating pairs to form inputs € R?? (e.g., unconstrained networks). While
straightforward, this approach means that algorithms are generally unable to relate
the same element appearing as 1st or 2nd input. As we will show, this is sufficient for
a wide family of learning algorithms to fail badly— ones equivariant to orthogonal
transforms (OrthEquiv algorithms; Definition 3.4.4).

For an OrthEquiv algorithm, training on orthogonally transformed data does not
affect its prediction, as long as test data is identically transformed. In fact, many
standard learning algorithms are OrthEquiv, including unconstrained MLP trained in

NTK regime (Lemma 3.4.5).

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set D = {(z;, v:) },
where z; € Z are inputs and y; €) are targets, a learning algorithm Alg produces a
function Alg(D): Z — Y such that Alg(D)(%’) is the function’s prediction on sample
Z'. Consider T a set of transformations Z — Z. Alg is equivariant to 7T iff for all trans-
form T' € T, training set D, Alg(D) = Alg(TD)oT, where TD = {(Tz,y): (z,y) € D}

is the training set with transformed inputs.

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). k-nearest-neighbor with
Euclidean distance, dot-product kernel ridge regression (including min-norm linear

regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Failure case. These algorithms treat the concatenated inputs as generic vectors. If
a transform fundamentally changes the quasimetric structure but is not fully reflected
in the learned function (e.g., due to equivariance), learning must fail. The two training
sets in Figure 3-3 are sampled from two different quasimetrics over the same 6 elements
An orthogonal transform links both training sets without affecting the test pair, which
is constrained differently in two quasimetrics. An OrthEquiv algorithm, necessarily

predicting the test pair identically seeing either training set, must thus fail on one. In

66

O ? 1

vio(d) > (A — vio(d) > . CZ(%”Z)A
d(z,y) +d(y,z) — disg(d)(diss(d) + d(y, 2)) d(y, w) + d(z) 2-disg(d)
Training (—) : d(z,2) =¢, d(w,z) =1, Training (—>) : d(z,2) =¢, d(w,z) =1,
d(z,y) =1, d(y,w')=1. d(z,y) =1, dy,w)=1.
Test (--») : d(y,z) =7 Test (--») : d(y,z) =7

Figure 3-3: Two training sets pose incompatible constraints (-) for the test pair distance
d(y,z). With one-hot features, an orthogonal transform can exchange (x,y) <> (*,y') and
(x,w) <> (*,w"), leaving the test pair (y, z) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (y, z). For appropriate ¢, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

the appendix, we empirically verify that unconstrained MLPs indeed do fail on this
construction.

Extending to larger quasimetric spaces, we consider graphs containing many copies
of both patterns in Figure 3-3. With high probability, our sampled training set fails in
the same way—the learning algorithm can not distinguish it from another training set

with different quasimetric constraints.

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (f,,), be an arbitrary se-
quence of large values. There is an infinite sequence of quasimetric spaces ((X,, d,))n
with |X,| = n, X, C R" such that, over a random training set S of size m, any
OrthEquiv algorithm outputs a predictor d that

o d fails non-negativity, or

e max(disg(d),vio(d)) > f. (i.e., d approximates training S badly or is far from

a quasimetric),

with probability 1/2 — o(1), as long as S does not contain almost all of the pairs

1 —m/n? = w(n='/?), and does not only include few pairs m/n? = w(n=/2).
Furthermore, standard NTK results show that unconstrained MLPs trained in

NTK regime converge to a function with zero training loss. By the above theorem,

the limiting function is not a quasimetric with nontrivial probability. In the appendix,

67

we formally state this result. Despite their empirical usages, these results suggest that

unconstrained networks are likely not suited for quasimetric learning.

3.4.3 Quasimetric Embeddings

A quasimetric embedding consists of a mapping f from data space X to a latent
quasimetric space (Z,d,), and predicts cZ(a:,y) 2 d.(f(x), f(y)). Therefore, they
always respect all quasimetric constraints and attain optimal violation of value 1,
regardless of training data.

However, unlike deep networks, their distortion (approximation) properties depend
on the specific latent quasimetrics. If the latent quasimetric is not overly restrictive
and can approximate any quasimetric (with flexible learned encoders), we have nice
guarantees for both distortion and violation.

In the section below, we present Poisson Quasimetric Embedding (PQE) as such a

latent quasimetric, along with its theoretical distortion and violation guarantees.

3.5 Poisson Quasimetric Embeddings (PQEs)

Motivated by above theoretical findings, we aim to find a latent quasimetric space
(R?,d,) with a deep network encoder f: X — R?, and a quasimetric d. that is both

universal and differentiable:
e (universality) for any data quasimetric (X, d), there exists an encoder f such
that d.(f(z), f(y)) = d(z,y);
e (differentiability) d, is differentiable (for optimizing f and possible integration
with other gradient-based systems).

Notation 3.5.1. We use z,y for elements of the data space X', u,v for elements of
the latent space R?, upper-case letters for random variables, and (-). for indicating

functions in latent space (e.g., d.).

An existing line of machine learning research learns quasipartitions, or partial

orders, via Order Embeddings (Vendrov et al., 2015). Quasipartitions are in fact

68

special cases of quasimetrics whose distances are restricted to be binary, denoted as
7. An Order Embedding is a representation of a quasipartition, where 7% (z,y) = 0

(i.e., x is related to y) iff f(x) < f(y) coordinate-wise:
7% (z,y) £ 705(f(2), fF(1) 2 1= [[11, -, <o (3.3)
J

Order Embedding is universal and can model any quasipartition (see appendix and
Hiraguchi (1951)).
Can we extend this discrete idea to general continuous quasimetrics? Quite naively,

one may attempt a straightforward soft modification of Order Embedding:

rOf (u,v) & 1= JJexp (= (u; —v)") =1 —exp (=) (uy - Uj)+>, (3.4)
J J
which equals 0 if u < v coordinate-wise, and increases to 1 as some coordinates violate

this condition more. However, it is unclear whether this gives a quasimetric.

A more principled way is to parametrize a (scaled) distribution of latent quasi-

partitions 11,, whose expectation naturally gives a continuous-valued quasimetric:

d,(u,v; 11, 0) £ a - Ep . [7.(u,v)], a>0. (3.5)

Poisson Quasimetric Embedding (PQE) gives a general recipe for constructing
such II, distributions so that d, is universal and differentiable. Within this framework,

SoftOE

we will see that 73 is actually a quasimetric based on such a distribution and is

(almost) sufficient for our needs.

3.5.1 Distributions of Latent Quasipartitions

A random latent quasipartition m,: R x R? — {0, 1} is a difficult object to model,
due to complicated quasipartition constraints. Fortunately, the Order Embedding

representation (Equation (3.3)) is without such constraints. If, instead of fixed latents

69

u, v, we have random latents R(u), R(v), we can compute:

E.. [m.(u,v)] = Egy,re) [TO5(R(u), R(v))] =1 — P[R(u) < R(v) coordinate-wise] .
(3.6)

In this view, we represent a random 7, via a joint distribution of random vectors!
{R(u)},ecrd, i-e., a stochastic process. To easily compute the probability of this
coordinate-wise event, we assume that each dimension of random vectors is from an

independent process, and obtain
Exr, [m.(u,0)] = 1= [[P[R;(u) < R;(v)]. (3.7)
J

The choice of stochastic process is flexible. Using Poisson processes (with Lebesgue
mean measure; Definition 3.2.3) that count random points on half-lines? (—oo, al, we
can have R;j(u) = N;((oc0,u,]), the (random) count of events in (oo, u;] from j-th

Poisson process:

B [m2(u,0)] = 1= [[P[N;((—00,u;]) < Nj((—o00,v;])] (3.8)
J
=1 — [e (= (u —v))") = 72 (u,0), (3.9)
J
where we used Fact 3.2.4 and the observation that one half-line is either subset

or superset of another. Indeed, 73°"OF is an expected quasipartition (and thus a

quasimetric), and is differentiable.

Considering a mixture of such distributions for expressiveness, the full latent

quasimetric formula is

dPEH (4 ;@) Za, <1 — exp (Z Wi — Vi)), (3.10)
j

Tn general, these random vectors R(u) do not have to be of the same dimension as u € R?,
although the dimensions do match in the PQE variants we experiment with.

2Half-lines has Lebesgue measure co. More rigorously, consider using a small value as the lower
bounds of these intervals, which leads to same result.

70

where we slightly abuse notation and consider latents u and v as (reshaped to) 2-
dimensional. We will see that this is a special PQE case with Lebesgue measure and

half-lines, and thus denoted PQE-LH.

3.5.2 General PQE Formulation

We can easily generalize the above idea to independent Poisson processes of general
mean measures f; and (sub)set parametrizations u — A;(u), and obtain an expected

quasipartition as:
E meee, A)[Wz(%v)] (3.11)
21— HIP’) < N;(A4;(0))] (3.12)
~4—HPPmm((HA(W<%MM SN A@)], (313)

J

Poisson rate of points landlng only in Aj(u)

which is differentiable as long as the measures and set parametrizations are (after set

differences). Similarly, considering a mixture gives us an expressive latent quasimetric.

A general PQE latent quasimetric is defined with {(p; j, A; ;) }i.; and weights a; > 0

as:

= ZO‘Z TP (g, 4, [T (1, 0))] (3.14)

_Z%@—Hﬂ%mmzﬂﬂ&ﬂm<%Wm((N&AmD

whose optimizable parameters include {«;};, possible ones from {(u;;, Ai;)}i; (and
encoder f).

This general recipe can be instantiated in many ways. Setting A; ;(u) — (—o0, u;]
and Lebesgue p; ;, recovers PQE-LH. In Appendix B.3.2, we consider a form with
Gaussian-based measures and Gaussian-shapes, denoted as PQE-GG. Unlike PQE-LH,
PQE-GG always gives nonzero gradients.

71

Implementation Techniques for PQEs In Appendix B.3.4, we discuss several
implementation techniques that empirically improve stability, including learning «;’s
with deep linear networks, a formulation that outputs discounted distance, etc. These
techniques are also implemented in our GitHub repository: https://github.com/

quasimetric-learning/torch-quasimetric.

3.5.3 Continuous-valued Stochastic Processes

But why Poisson processes over more common choices such as Gaussian processes? It
turns out that common continuous-value processes fail to give a differentiable formula.

Consider a non-degenerate process {R(u)},, where (R(u), R(v)) has bounded
density if u # v. Perturbing u — u + § leaves P [R(u) = R(u + 0)] = 0. Then one of
P[R(u) < R(u+ 0)] and P[R(u + 6) < R(u)] must be far away from 1 (as they sum
to 1), breaking differentiability at P [R(u) < R(u)] = 1. (This argument is formalized
in the appendix.) Discrete-valued processes, however, can leave most probability mass

on R(u) = R(u + J) and thus remain differentiable.

3.5.4 Theoretical Guarantees

Our PQEs bear similarity with the algorithmic quasimetric embedding construction
in Mémoli et al. (2018). Extending their analysis to PQEs, we obtain the following

distortion and violation guarantees.

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of
Section 3.4, any quasimetric space with size n and treewidth ¢ admits a PQE-LH and
a PQE-GG with distortion O(tlog?n) and violation 1, with an expressive encoder

(e.g., a ReLU network with > 3 layers and polynomial width).

In fact, these guarantees apply to any PQE formulation that satisfies a mild
condition. Informally, any PQE with h x k Poisson processes (i.e., h mixtures) enjoys
the above guarantees if it can approximate the discrete counterpart: mixtures of A

Order Embeddings, each specified with k£ dimensions. In the appendix, we make this

72

https://github.com/quasimetric-learning/torch-quasimetric
https://github.com/quasimetric-learning/torch-quasimetric

condition precise and provide a full proof of the above theorem.

3.5.5 Experiments

Our experiments are designed to (1) confirm our theoretical findings and (2) compare
PQEs against a wider range of baselines, across different types of tasks. In all
experiments, we optimize 7-discounted distances (with v € {0.9,0.95}), and compare

the following five families of methods:

e PQEs (2 formulations): PQE-LH and PQE-GG with techniques mentioned
in Section 3.5.2.

e Unconstrained networks (20 formulations): Predict raw distance (directly,
with exp transform, and with (-)? transform) or y-discounted distance (directly,
and with a sigmoid-transform). Each variant is run with a possible triangle
inequality regularizer E, . [max(0, yd@y)+dy.z) VCZ(W))2] for each of 4 weights

€{0,0.3,1,3}.

e Asymmetrical dot products (20 formulations): On input pair (x,y), en-
code each into a feature vector with a different network, and take the dot product.
Identical to unconstrained networks, the output is used in the same 5 ways, with

the same 4 triangle inequality regularizer options.

e Metric encoders (4 formulations): Embed into Euclidean space, ¢; space,

hypersphere with (scaled) spherical distance, or a mixture of all three.

e DeepNorm (2 formulations) and WideNorm (3 formulations): Quasi-
metric embedding methods that often require significantly more parameters
than PQEs (often on the order of 10° ~ 10" more effective parameters; see the
appendix for detailed comparisons) but can only approximate a subset of all
possible quasimetrics (Pitis et al., 2020).

We show average results from 5 runs. The appendix provides experimental details,

full results (including standard deviations), additional experiments, and ablation

studies.

73

107!

~T
— PQE
Unconstrained Net.

—— Asym. Dot Product

10724 —— Metric Embedding Groundtruth

~——— DeepNorm Distance Matrix
I

—— WideNorm

Groundtruth
Distance Matrix

Groundtruth
Distance Matrix

,ﬂ
2

Heldout MSE
Heldout MSE

(a) A dense graph. (b) A sparse graph. (c) A sparse graph with block struc-
ture.

o =
5
=
o
—
o B 0N ow
5 8 8

g 10-4
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Training Set Fraction Training Set Fraction Training Set Fraction

Figure 3-4: Comparison of PQE and baselines on quasimetric learning in random directed
graphs.

Random directed graphs. We start with randomly generated directed graphs of
300 nodes, with 64-dimensional node features given by randomly initialized neural
networks. After training with MSE on discounted distances, we test the models’
prediction error on the unseen pairs (i.e., generalization), measured also by MSE on
discounted distances. On three graphs with distinct structures, PQEs significantly
outperform baselines across almost all training set sizes (see Figure 3-4). Notably,
while DeepNorm and WideNorm do well on the dense graph quasimetric, they struggle
on the other two, attaining both high test MSE (Figure 3-4) and train MSE (not
shown). This is consistent with the fact that they can only approximate a subset of

all quasimetrics, while PQEs can approximate all quasimetrics.

Large-scale social graph. We choose the Berkeley-Stanford Web Graph (Leskovec
and Krevl, 2014) as the real-wold social graph for evaluation. This graph consists
of 685,230 pages as nodes, and 7,600,595 hyperlinks as directed edges. We use 128-
dimensional node2vec features (Grover and Leskovec, 2016) and the landmark method
(Rizi et al., 2018) to construct a training set of 2,500,000 pairs, and a test set of 150,000
pairs. PQEs generally perform better than other methods, accurately predicting finite
distances while predicting high values for infinite distances (see Table 3.1). DeepNorms
and WideNorms learn finite distances less accurately here, and also do much worse
than PQEs on learning the (quasi)metric of an undirected social graph (shown in the

appendix).

74

Triangle MSE w.r.t. L1 Error Prediction d
inequality 7y-discounted when true when true
regularizer | distances (x107%) | d<ool d=oo?

PQE-LH X 3.043 1.626 69.942
PQE-GG X 3.909 1.895 101.824
Best Unconstrained Net. X 3.086 2115 59.524
v 2.813 2.211 61.371

48.1 2.520 x10' 2. 10t

Best Asym. Dot Product X 8.106 920 x 011 679 x OH
v 48.102 2.299 x10* 2.500 x10
Best Metric Embedding X ‘ 17.595 7.540 53.850
Best DeepNorm X \ 5.071 2.085 120.045
Best WideNorm X \ 3.533 1.769 124.658

Table 3.1: Quasimetric learning on large-scale web graph. “Best” is selected by test MSE
w.r.t. v-discounted distances.

Offline Q-learning. Optimal goal-reaching plan costs in MDPs are quasimetrics
(Bertsekas and Tsitsiklis, 1991; Tian et al., 2020a) (see also the appendix). In practice,
optimizing deep Q-functions often suffers from stability and sample efficiency issues
(Henderson et al., 2018; Fujimoto et al., 2018). As a proof of concept, we use PQEs
as goal-conditional Q-functions in offline Q-learning, on the grid-world environment
with one-way doors built upon gym-minigrid (Chevalier-Boisvert et al., 2018) (see
Figure 3-1 right), following the algorithm and data sampling procedure described in
Tian et al. (2020a). Adding strong quasimetric structures greatly improves sample
efficiency and greedy planning success rates over popular existing approaches such as
unconstrained networks used in Tian et al. (2020a) and asymmetrical dot products
used in Schaul et al. (2015) (see Figure 3-5). As an interesting observation, some

metric embedding formulations work comparably well.

3.6 Interval Quasimetric Embeddings (IQEs)

In this section, we further improve PQEs by introducing Interval Quasimetric Embed-
dings (IQEs). IQEs enjoy all nice theoretical properties of PQEs, but also drastically
reduces parameter counts and satisfy latent positive homogeneity for easier optimiza-

tion.

The main issue with PQE is that its components are bounded in [0, 1) and suffer

I6)

1.0
0.8
% 0.6
]
i3
1)
>
g 0.4
Unconstrained Network
—— Asym. Dot Product
0.2 —— Metric Embedding
= —— DeepNorm
0.0 —— WideNorm
0 200 400 600 800 1000

Number of Training Trajectories
Figure 3-5: Offline Q-learning results with PQE and baseline architectures as Q-function
parametrizations.

Aiatent(@ - 2y, - Zy) diatent(a - 2y, a - Zy)
0.8 A
8 { = Final Quasimetric Output —— Final Quasimetric Output
32 Components 32 Components
0.6
6 -
44 0.4 4
24 0.2 1
51553
L K == oo
0 25 50 75 100 diatent 0 25 50 75 100 Oiatent
« (Scale of Input Latent Pair) #Pparam a (Scale of Input Latent Pair) #param
(a) Poisson Quasimetric Embedding. (b) Deep Norm (Pitis et al., 2020).
diatent(a - 2y, - Zy) diatent(@ - 2y, a - Zy)
524577
064 — Final Quasimetric Output 15.0 1 = Final Quasimetric Output
' 32 Components 32 Components
12.5 4
0.4 - 10.0 A
7.5 1
0.2 A 5.0 1
2.5 A
0.0 1 0.0 1 0
0 25 50 75 100 Oiatent 0 25 50 75 100 iatent
a (Scale of Input Latent Pair) #param @ (Scale of Input Latent Pair) #param
(¢) Wide Norm (Pitis et al., 2020). (d) Interval Quasimetric Embedding.

Figure 3-6: Different latent quasimetrics djatent. Plots show how predicted distances (and
components forming them) change as two latent vectors move apart. Red bars show the
number of trainable parameters in djatent. (a) PQE suffers from diminishing gradients. (b,c)
Deep Norm and Wide Norm require expensive latent quasimetric head, and have complex
relations between latents and predictions (due to its learned concave transformations). (d)
IQE uses a simple head and does not suffer from gradient optimization issues. (a-d) Plots
are computed at random initializations, with Deep Norm and Wide concave transformation
parameters scaled to emphasize the non-linearity.

76

from diminishing gradients (Figure 3-6a). Special reparametrization tricks are necessary
for successful optimization Section 3.5. We propose Interval Quasimetric Embeddings
(IQE) to directly address this drawback. Appendix B.5 derives IQE via a modified
PQE framework.

IQE is a new encoder-based quasimetric model, where a (learned) encoder maps
data into some latent space, where our latent IQE quasimetric diqe outputs a quasi-

metric distance between two given latents.

IQE Components. Similar to PQE, IQE considers input latents as two-dimensional
matrices (via reshaping). For input latents u,v € R¥! IQE is formed by components
that capture the total size (i.e., Lebesgue measure) of unions of several intervals on

the real line:

I
Vi=1,2, ...k, U Ujj, Max u,],vw)}) (3.15)

WV
lnterval on the real hne

size of the set formed from union of [intervals

Figure 3-7 provides a graphical illustration on how to compute these components.

Combining IQE Components. Unlike PQE, IQE components are positive homo-
geneous and can be arbitrarily scaled (Figure 3-6d), and thus do not require special
reparametrization in combining them. Simply summing yields the most basic yet

effective IQE formulation, [QE-sum:
dIQE—sum<u7 U) £ Z dz(“y U) (316>

Using the maxmean reduction from prior work (Pitis et al., 2020), we obtain

IQE-maxmean with a single extra parameter « € [0, 1] (parametrized via a sigmoid

7

(a) Input Latents u, v (b) Find Intervals [u;;, max(u;;, v;;)] (¢) Union of Intervals in Each Group (d) IQE Output £ Combining Union Sizes

0.2 1.7] e

1)

0 m—

Group 1 (i

0.4 0.3 [l

Si f Union =0.1+0.9=1 i i
ize of Union Eg., dIQE<“7 1‘) £ sum of union sizes

=19

=)

Group 2 (i

1.1 0.6 ° °
Size of Union = 0.9

Figure 3-7: Computing IQE quasimetric from latent © € R?*3 to latent v € R?*3.

transform):

dIQE—maxmean (ua v; O./) = maxmean(dl (u7 U)a R dk(ua U); O'/) (317)
2 o - max(di(u,v),...,dp(u,v))

+ (1 —) - mean(d; (u,v), ..., dg(u,v))

Prior methods often require expensive predictor heads (e.g., MRN, Deep Norm
and Wide Norm) and/or complex initialization and reparametrization (e.g., PQESs).
In contrast, both IQE formulations have very simple forms. Next, we will see that

IQEs are not only simple, but also practically effective.

3.6.1 Evaluating IQE on Modelling Social Graphs

We evaluate IQE on the same experiment in Table 3.1 that learns quasimetric graph
distances over the large real-world social graph, Berkeley-Stanford Web Graph (Leskovec
and Krevl, 2014). For both IQE and PQE, we tune the parameters: component size
[€ {8,16,32,64} (and thus correspondingly number of components k € {64, 32,16, 8}).
For other baselines, we tune their parameters in the same fashion as the experiment

in Table 3.1.

IQEs significantly improve modeling large real-world graphs. We train vari-
ous quasimetric models to approximate the training distances by minimizng MSE w.r.t.
~v-discounted distance with v = 0.9. In Table 3.2, both IQEs greatly outperform all

baselines, attaining lowest MSE, accurately predicting finite distances, and outputting

78

Validation Set Metrics

MSE w.r.t. 7-discounted {1 error when Predicted distance
distances (x1073) | true d < oo | when true d = oo 1
IQE-sum 1.078 £ 0.053 1.303 = 0.031 118.244 + 5412
IQE-maxmean 1.488 + 0.307 1.333 £ 0.218 89.635 + 1.726
PQE-LH 2.921 + 0.187 1.659 + 0.048 71.390 + 0.436
PQE-GG 3.872 + 0.136 2.121 + 0.146 oo (overflow)
Wide Norm 3.533 £ 0.212 1.769 + 0.021 124.658 + 2.868
Deep Norm 5.071 + 0.135 2.085 + 0.063 120.045 + 4.353
MRN 10.820 £ 0.817 2.882 + 0.205 129.528 + 4.237
Best Metric Embedding 17.595 + 0.267 7.540 + 0.074 53.850 + 3.843
. (No Regularizer) 3.086 + 0.039 2.115 + 0.024 59.524 + 0.370
Best Unconstrained Net.
(4 A-Ineq. Regularizer) 2.813 + 0.063 2.211 + 0.034 61.371 + 0.394
(No Regularizer) 48.106 + 0.006 2.520 x 10 +2.175 10" 2.679 x10" +2.540 »x 10!
Best Asym. Dot Product
(+ A-Ineq. Regularizer) 48.102 + 0.000 2.299 x10' £9.197 %100 2,500 x10'" £1.446 »x 10"

Table 3.2: Modeling the large-scale Berkeley-Stanford Web Graph with different quasimetric
models. For some baseline families, we show the best method picked w.r.t. validation set
MSE.

high predictions for infinite (unreachable) pairs. Compared to the prior best methods,
the simple IQE-sum has a 61% improvement on MSE and a 16% improvement on ¢,
error (on finite distances).

In the full paper for IQE (Wang and Isola, 2022a), additional experiments on
random graphs and offline Q-learning shows the superior performance of IQE over

general settings. We refer the reader to that paper for more details.

3.6.2 Theoretical Results on Universal Approximation

Following PQEs (Section 3.5.4) and prior works (Liu et al., 2022; Pitis et al., 2020), we
assume that the target quasimetric (X, d) has only finite distances. Here we present

strong universal approximation gurantees for IQEs. All full proofs are in Appendix B.6.

Theorem 3.6.1 (IQE Universal Approximation; Finite Case). For any finite
quasimetric space (X, d) with |X| = n < oo, there exists encoders fi, fo such that
(f1, diQE-maxmean) €xactly represents d, and (fs, diqe-sum) approximates d with distor-

tion O(tlog®n), where ¢ is a complexity measure of (X, d) (called treewidth).

Sketch. IQE-maxmean can exactly represent function dasym(u,v) = max;(v; — u;)*.

79

Rewriting d(z,y) = max,ex(d(z, z) — d(y, z))" leads a desired encoder f.

For IQE-sum, each IQE component can exactly represent any quasimetric that
takes in binary values (called quasipartitions) with arbitrary scaling. The desired dis-
tortion can be achieved with a convex combination of quasipartitions (Lemma B.3.5),

and thus also with IQE-sum. O

Theorem 3.6.2 (IQE Universal Approximation; General Case). Consider any
quasimetric space (X,d) where X is compact and d is continuous. Ve > 0, with

sufficiently large m, there exists some continuous encoder f: X — R™ such that

Ve X,y e X, |diqe-maxmean(f(2), f(y)) —d(z,y)| <e. (3.18)

Relation with PQE. IQE-maxmean guarantees are strictly stronger than those
of PQEs (and IQE-sum), which is only a distortion bound on the finite case using
polynomial-sized encoders. With the same encoder, IQE-maxmean exactly represents

any finite quasimetric.

Relation with MRN. Our [QE-maxmean analysis is largely inspired by the MRN
results. In Appendix B.6, full proofs reduce the MRN asymmetrical component to an

[QE-maxmean.
Deep Norm and Wide Norm. Also using a connection to MRN, we are the first

to prove that Deep Norm and Wide Norm universally approximate any quasimetric.

Theorem 3.6.3 (Deep Norm and Wide Norm Universal Approximation).
Deep Norm and Wide Norm enjoy the same approximation gaurantees as stated for

IQE-maxmean in Theorems 3.6.1 and 3.6.2.

3.7 Related Work

Metric learning. Metric learning aims to approximate a target metric/similarity

function, often via a learned embedding into a metric space. This idea has successful

80

applications in dimensionality reduction (Tenenbaum et al., 2000), information retrieval
(Wang et al., 2014), clustering (Xing et al., 2002), classification (Weinberger et al.,
2006; Hoffer and Ailon, 2015), etc. While asymmetrical formulations have been
explored, they either ignore quasimetric constraints (Oord et al., 2018; Logeswaran
and Lee, 2018; Schaul et al., 2015), or are not general enough to approximate arbitrary

quasimetric (Balashankar and Subramanian, 2021), which is the focus of the present

paper.

Isometric embeddings. Isometric (distance-preserving) embeddings is a highly
influential and well-studied topic in mathematics and statistics. Fundamental results,
such as Bourgain’s random embedding theorem (Bourgain, 1985), laid important
ground work in understanding and constructing (approximately) isometric embed-
dings. While most such researches concern metric spaces, Mémoli et al. (2018) study
an algorithmic construction of a quasimetric embedding via basic blocks called quasi-
partitions. Their approach requires knowledge of quasimetric distances between all
pairs and thus is not suitable for learning. Our formulation takes inspiration from the
form of their embedding, but is fully learnable with gradient-based optimization over

a training subset.

Quasimetrics and partial orders. Partial orders (quasipartitions) are special
cases of quasimetrics (see Section 3.5). A line of machine learning research studies
embedding partial order structures into latent spaces for tasks such as relation discovery
and information retrieval (Vendrov et al., 2015; Suzuki et al., 2019; Hata et al.,
2020; Ganea et al., 2018). Unfortunately, unlike PQEs, such formulations do not
straightforwardly generalize to arbitrary quasimetrics, which are more than binary
relations. Similar to PQEs, DeepNorm and WideNorm are quasimetric embedding
approaches learnable with gradient-based optimization (Pitis et al., 2020). Theoreically,
they universally approximates a subset of quasimetrics (ones induced by asymmetrical
norms). Despite often using many more parameters, they are restricted to this subset

and unable to approximate general quasimetrics like PQEs do (Figure 3-4).

81

3.8 Implications

In this work, we study quasimetric learning via both theoretical analysis and empirical
evaluations.

Theoretically, we show strong negative results for a common family of learning
algorithms, and positive guarantees for our proposed Poisson Quasimetric Embedding
(PQE). Our results introduce the novel concept of equivariant learning algorithms,
which may potentially be used for other learnability analyses with algorithms such
as deep neural networks. Additionally, a thorough average-case or data-dependent
analysis would nicely complement our results, and may shed light on conditions where
algorithms like deep networks can learn decent approximations to quasimetrics in
practice.

PQEs are the first quasimetric embedding formulation that can be learned via
gradient-based optimization. Empirically, PQEs show promising performance in
various tasks. Furthermore, PQEs are fully differentiable, and (implicitly) enforce a
quasimetric structure in any latent space. They are particularly suited for integration
in large deep learning systems, as we explore in the Q-learning experiments. This can
potentially open the gate to many practical applications such as better embedding for
planning with MDPs, efficient shortest path finding via learned quasimetric heuristics,
representation learning with quasimetric similarities, causal relation learning, etc.

Finally, we proposed Interval Quasimetric Embedding (IQE) with both strong
theoretical guarantees and improved empirical performance over PQE. We believe
that IQE’s simple yet powerful form can enable more machine learning applications of
quasimetrics in modeling asymmetrical geometric structures, and that our four criteria

are helpful in developing novel and better quasimetric structures.

82

Chapter 4

Reinforcement Learning as

Quasimetric Representation Learning

In goal-reaching reinforcement learning (RL), the optimal value function has a par-
ticular geometry, called quasimetric structure. This chapter introduces Quasimetric
Reinforcement Learning (QRL), a new RL method that utilizes quasimetric models
to learn optimal value functions. Distinct from prior approaches, the QRL objective
is specifically designed for quasimetrics, and provides strong theoretical recovery
guarantees. Empirically, we conduct thorough analyses on a discretized MountainCar
environment, identifying properties of QRL and its advantages over alternatives. On
offline and online goal-reaching benchmarks, QRL also demonstrates improved sample
efficiency and performance, across both state-based and image-based observations.
This chapter is based on published work:
1. Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning with
co-authors Antonio Torralba, Phillip Isola, and Amy Zhang at the International
Conference on Machine Learning (ICML) 2023 (Wang et al., 2023).

4.1 Introduction

Modern decision-making problems often involve dynamic programming on the cost-to-

go function, also known as the value function. This function allows for bootstrapping,

83

where a complicated decision is broken up into a series of subproblems. Once a
subproblem is solved, its subgraph can be collapsed into a single node whose cost is
summarized by the value function. This approach appears in nearly all contemporary

RL and planning algorithms.

In deep RL, value functions are modeled with general neural nets, which are
universal function approximators. Further, most RL algorithms focus on optimizing
toward a single goal. In this setting, the value function V*(s) reports the (optimal)
cost-to-go to achieve that single goal from state s € S. It is known that V* can be
any function V*: § — R, that is, for any V*: § — R, there exists a Markov Decision
Process (MDP) for which that V* is the desired optimal value function.

However, an additional structure emerges when we switch to the multi-task setting,
where the (goal-conditioned) value function V*(s;¢9): S x & — R is the cost-to-go to
a given goal state g (Figure 4-1). In this case, the optimal value function, for any
MDP, is always a quasimetric function (Chapter 3; Proposition B.1.4; Sontag (1995);
Tian et al. (2020a); Liu et al. (2022)), which is a generalization of metric functions to
allow asymmetry while still respecting the triangle inequality.

Given this structure, it is natural to constrain value function search to the space
of quasimetrics. This approach searches within a much smaller subset of the space
of all functions § x & — R, ensuring that the true value function is guaranteed to
be present within this subspace. Differentiable parametric quasimetric modelshave
already enabled a number of studies to explore the use of these models in standard
RL algorithms, resulting in improved performance in some cases (Section 3.5.5; Pitis

et al. (2020); Liu et al. (2022)) .

However, traditional RL algorithms (such as Q-learning (Watkins, 1989)) were
designed for large unconstrained function spaces, and their performance may severely
degrade with restricted spaces (Wang et al., 2020, 2021). Instead of constraining the
search space, they encourage quasimetric properties via the objective function. For
example, the Bellman update partly enforces the triangle inequality on the current
state, next state, and target goal. With the advent of differentiable parametric

quasimetric models, these properties come for free with the architecture, and we aim

84

to design a new RL algorithm specifically geared towards learning quasimetric value

functions.

In this work, we propose Quasimetric Reinforcement Learning (QRL). QRL is
in the family of geometric approaches to value function learning, which model the
value function as some distance metric, or, in our case, a quasimetric. Obtaining local
distance estimates is easy because the cost of a single transition is by definition given
by the reward function, and can be learned via regression towards observed rewards.
However, capturing global relations is hard. This is a problem studied in many fields
such as metric learning (Roweis and Saul, 2000; Tenenbaum et al., 2000), contrastive
learning (Oord et al., 2018; Wang and Isola, 2020), etc. A general principle is to find
a model where local relationships are captured and otherwise states are spread out.

We argue that a similar idea can be used for value function learning. QRL finds a

uasimetric value function in which local distances are preserved, but otherwise states

are maximally spread out. All three properties are essential in accurately learning the

function. Intuitively, a quasimetric function that maximizes the separation of states s
and sq, subject to the constraint that it captures cost for each adjacent pair of states,
gives exactly the cost of the shortest path from sy to s;. It can’t be longer than that

due to triangle inequality from quasimetric and preservation of local distances. It

can’t be shorter than that due to the maximal spreading. Analogously, consider a

chain with several links. If one pushes the chain ends apart, then the distance between

the ends is exactly equal to the length of all the links.

These three properties (which we will indicate with the three text colors above)

make our method distinct from other contrastive approaches to RL, and ensure that
QRL provably learns the optimal value function. Some alternatives use symmetrical
metrics that cannot capture complex dynamics (Yang et al., 2020; Ma et al., 2022;
Sermanet et al., 2018). Others do not enforce how much adjacent states are pulled
together nor how much states are pushed apart, and rely on carefully weighting loss
terms and specific sample distributions to estimate on-policy (rather than optimal)

values (Eysenbach et al., 2022; Oord et al., 2018).

In summary, our contributions in this paper are

85

Single-Task RL Goal-Reaching RL

S — R function space x 8§ — R function space

AED

All possible § — R functions All possible § x § — R functions
equals is strict superset of

Value Fns. for All MDPs Goal-Cond. Value Fns. for All MDPs
equals
No Structure All Quasimetrics

Figure 4-1: In multi-goal RL, the set of all possible (optimal) value functions is exactly the
set of quasimetrics. In single-task RL, there is no similar structure and value functions can
be any function.

e Based on the connection between value functions and quasimetrics (Section 4.2),
we propose QRL, a new RL framework that utilizes quasimetric models to learn

optimal goal-reaching value functions (Section 4.3).

e We provide theoretical guarantees (Section 4.3.1) as well as thorough empirical
analysis on a discretized MountainCar environment (Section 4.3.3), highlighting

qualitative differences with many existing methods.

e We augment the proposed method to (optionally) also learn optimal Q-functions

and/or policies (Section 4.3.4).

e On offline maze2d tasks, QRL performs well in single-goal and multi-goal eval-
uations, improving > 37% over the best baseline and > 46% over the d4rl
handcoded reference controller Fu et al. (2020) (Section 4.5.1).

e Our learned value functions can be directly used in conjunction with trajectory

modeling and planning methods, improving their performances (Section 4.5.1).

e On online goal-reaching settings, QRL shows up to 4.9x improved sample
efficiency and performance in both state-based and imaged-based observations,

outperforming baselines including Contrastive RL (Eysenbach et al., 2022) and

86

plugging quasimetric Q-function models into existing RL algorithms (Liu et al.,

2022) (Section 4.5.2).

4.2 Value Functions are Quasimetrics

This section covers the preliminaries on goal-reaching RL settings, value functions,
and quasimetrics. We also present a new result showing an equivalence between the

latter two.

4.2.1 Goal-Reaching Reinforcement Learning

We focus on the goal-reaching RL tasks in the form of Markov Decision Processes
(MDPs): (S, A, P, R), where S is the state space, A is the action space, P: § x A —
A(S) is the transition function, and R: & X S — [Rumin, 0] is the reward (cost) function
for performing a transition between two states. A(A) denotes the set of distributions
over set A.

Given a target state Sgoa € S, a goal-conditioned agent m(a | s; Sgoal) is tasked
to reach sgoq as soon as possible from the current state s. Formally, until the agent
reaches the goal, it receives a negative reward (cost) r(s, s’) for each transition (s, s’).
The agent 7 aims to maximize the expected total reward given any s and Sgo,), Which
equals the negated total cost. We call this quantity the (goal-conditioned) on-policy

value function V7 (s; Sgoeal) for .

There exists an optimal policy 7* that is universally optimal:

VS, Sgoal, V’r*(s; Sgoal) = max V™(S; Sgoal)- (4.1)

We thus define the optimal value function V* £ V™",

Similarly, we can define the optimal state-action value function, i.e., Q-function:

Q*(S, as; Sgoal) =]ES’NP(s,a) [R(57 S/) + V*(S/; Sgoal)] .

87

4.2.2 Value-Quasimetric Equivalence

Regardless of the underlying MDP, some fundamental properties of optimal value V*
always hold.

Triangle Inequality. As observed in Chapter 3 and prior works (Liu et al., 2022;
Pitis et al., 2020; Durugkar et al., 2021), the optimal value V* always obeys the

triangle inequality (due to optimality and Markov property):

Vs1, S, 83, V7*(s1582) + V*(s9;83) < V*(s1;83). (4.2)

Intuitively, V*(s1, s3) is the highest value among all plans from s; to s3; and V*(s1; s9)+
V*(s9; s3) is the highest among all plans from s; to s, and then to s3, a more restricted
set. Thus, Equation (4.2) holds, and —V* is just like a metric function on S, except

that it may be asymmetrical.

Quasimetrics are a generalization of metrics in that they do not require symmetry.

For a set X', a quasimetric is a function d: X x X — R such that

Vry, 29,73, d(¥1,79) + d(z9, 73) > d(21, 73) (4.3)
Vo, d(z,x)=0. (4.4)

We use Qmet(X') to denote all such quasimetrics over X.
Equation (4.2) shows that —V* € Qmet(S). In fact, the other direction also holds:
for any d € Qmet(S), —d is the optimal value function for some MDP defined on S.

Theorem 4.2.1 (Value-Quasimetric Equivalence).

Qmet(S) = {—V™: V* is the optimal value of
an MDP on S}. (4.5)

Generally, on-policy value —V™ may not be a quasimetric.

88

All proofs are deferred to the appendix.

Structure emerges in multi-goal settings. The space of quasimetrics is the
ezxact function class for goal-reaching RL. In contrast, a specific-goal value function
V*(- Sgoal) can be any arbitrary function S — R. In other words, going from single-
task RL to multi-task RL may be a harder problem, but also has much more structure

to utilize (Figure 4-1).

4.2.3 Quasimetric Models and RL

Quasimetric Models refer to parametrized models of quasimetrics dy € Qmet(X),
where 6 is the parameter to be optimized. Many recent quasimetric models are based
on neural networks (Chapter 3; Pitis et al. (2020)), can be optimized w.r.t. any
differentiable objective, and can potentially generalize to unseen inputs (due to neural
networks). Many such models can universally approximate any quasimetric and is

capable of learning large-scale and complex quasimetric structures Section 3.6.

An Overview of Quasimetric Models. A quasimetric model dy usually consists
of (1) a deep encoder mapping inputs in X to a generic latent space R? and (2) a
differentiable latent quasimetric head djsten: € Qmet(IR?) that computes the quasimetric
distance for two input latents. 6 contains both the parameters of the encoder and
parameters of the latent head djstent, if any. Recent works have proposed many choices
of djatent, which have different properties and performances. See Section 3.6 for an

in-depth treatment of such models.

Subtleties of Using Quasimetric Models in RL. It is tempting to parametrize
goal-conditioned value functions with quasimetric models in standard RL algorithms,
which optimizes for V* € Qmet(S). However, these algorithms usually use temporal-
difference learning or policy iteration, whose success relies on accurate representation
of intermediate results (e.g., on-policy values; Theorem 4.2.1) (Wang et al., 2020,

2021)) that are not quasimetrics. Indeed, simply using quasimetric models in such

89

algorithms may yield only minor benefits (Chapter 3) or require significant relaxations
of quasimetric inductive bias (Liu et al., 2022).
Can we directly learn V* without those iterative procedures? Fortunately, the

answer is yes, with the help of quasimetrics.

4.3 Quasimetric Reinforcement Learning

Quasimetric Reinforcement Learning (QRL) at its core learns the optimal goal-
conditioned value function V* that is parametrized by a quasimetric model dy C
Qmet(S).

Similar to many recent RL works (Kumar et al., 2019; Ghosh et al., 2019; Janner
et al., 2022, 2021; Emmons et al., 2021; Chen et al., 2021; Paster et al., 2022; Yang et al.,
2022), our method is derived with the assumption that the environment dynamics P
are deterministic.

Given ways to sample (e.g., from a dataset / replay buffer)

current state next state

n m
/ .-
(57 87 S 76) ™~ Ptransition (tranSItIOHS)
action reward<0
§ ™ Pstate (random state)
Sgoal ™~ Pgoal, (random goal)

QRL optimizes a quasimetric model dy as following:

IIlGaX ES’\‘pstate [d@ (S, g)] (46)

9~Pgoal

subject to E(s 4.6 1) [relu(dy(s,s') +1)?] < €,

~~Ptransition

where € > 0 is small, and relu(z) = max(z,0) prevents dy(s, s') from exceeding the

transition cost —r > 0.

After optimization, we take —dy as our estimate of V*. Section 4.3.4 discusses

extensions that learn optimal Q-functions @* and policies, making QRL suitable both

90

: dg accurately represents local costs maximizing quasimetric gives global costs
Environment : h . .) .) .
H H dy is a quasimetric = dy follows A-inequality
ynamics. (@ - @) < cost(@—Q) w(:
de(o , .) cost(O—;.) dg(.7 O) < total cost along any @>Q path
: : : : Under these constraints, we have
dy s < cost((C)}—> H
(O O) (O) i | max dg(. , O) = min htotal cost along path
dg(,) < cost() *pat
0. Q) <xO—0) e

quasimetric model all local transitions
Figure 4-2: QRL objective finds length of the shortest path connecting two states, ¢.e., the
optimal value V*.

IN N

as a standalone RL method or in conjunction with other RL methods.

4.3.1 QRL Learns the Optimal Value Function

By using quasimetric models dg to parametrize value functions, we inherently satisfy

the triangle-inequality constraints. What additional constraints should we add in

order to find the optimal value function for a specific MDP?

A Physical Analogy. Consider two objects connected by multiple chains. Each

chain is formed by several links. If we pull them apart, their distance will be limited

by the shortest of all chains. Then, simply measuring the distance between the two
objects gives the length of that “optimal” chain. This argument relies on (1) the

triangle inequality of our Euclidean physical space and (2) that each link of the chains

has a fized length unaffected by our pulling.

QRL works by the same principles, but in a quasimetric space that both satisfies

the triangle inequality and can capture any asymmetrical MDP dynamics (Figure 4-2):

e Locally, we constrain searching of V* to dy’s that are consistent with local costs,

1.e., not overestimating them:

V transition (s, a,s’,r), dp(s,s’) < —r. (4.7)

We ensure this because dy should approximate —V* and

action a

—V*(s;s") < cost of specific path s —— s' = —r.

91

e Globally, since dy is a quasimetric that satisfies the triangle inequality and
Equation (4.7), for every state s and goal g, any path s — g places a constraint

on dy(s,g):

dy(s,g) < total cost of path connecting s to g.

Optimal cost from s to g is given by pulling them apart:

max dg(s,g) = cost of shortest path connecting s to g

==V"(s;9). (4.8)

Optimal quasimetric —V* achieves this maxima for all (s, g) pairs. Therefore,
we maximize dy(s, g) simultaneously for all (s, g) pairs:

0" = arg max Es~psue[dp($, g)] (4.9)
0

9~Pgoal

subject to V(s,a,s’,r) transition, dy(s, s") < —r.
This gives exactly the optimal value:
do-(s,9) = =V"(s19), Vs,g, (4.10)

(assuming that peate and pgoa having sufficient coverage).
The linear programming characterization of V* (Manne, 1960; Denardo,
1970) is similar to Equation (4.9). However, instead of enforcing triangle inequalities

via | A||S|” constraints, our quasimetric models automatically satisfy them.

Theoretical Guarantees

We now formally state the recovery guarantees for QRL in both the ideal setting (i.e.,
optimizing over entire Qmet(S)) and the function approximation setting.

The proofs of the following results are mostly formalizations of the ideas above.

92

All proofs are presented in Appendix C.2.

Theorem 4.3.1 (Exact Recovery). If Equation (4.9) optimizes dy over the entire
Qmet(S), then for s ~ psate, § ~ Pgoat, We have dp-(s,g) = —V*(s; ¢g) almost surely.
In the more realistic case, we use a quasimetric family that is not quite as big as
the entire Qmet(S) but flexible enough to have universal approximation (e.g., IQE
Section 3.6). Using a relaxed constraint, we still have a strong guarantee of recovering

true V*, ensuring a small error even for (s, g) pairs that are far apart.

Theorem 4.3.2 (Function Approximation; Informal). Consider a quasimetric
model family {dy}s that is a universal approximator of Qmet(S) (in terms of L,

error). If we solve Equation (4.9) with a relaxed constraint, where
V(s,a,s’,r) transition, relu(dy(s,s’) +r) <e, (4.11)
for small € > 0. Then, for s ~ Dstate, § ~ Pgoal, We have

|do=(s,9) + (1 +€)V*(s;9)| € [=V/e, 0],

i.e., dg«(s,g) recovers —V*(s;¢) up to a known scale, with probability 1 — O(—+/e -

4.3.2 A Practical Implementation

Quasimetric Model. We use Interval Quasimetric Embeddings (IQE; Section 3.6)
as our quasimetric model family {dp}y. IQEs have convincing empirical results in

learning various quasimetric spaces, and enjoy strong approximation guarantees (as

needed in Theorem 4.3.2).

Constrained Optimization is done via dual optimization and jointly updating a
Lagrange multiplier A > 0 (Eysenbach et al., 2021). We use a relaxed constraint that

local costs are properly modeled in expectation.

93

Single-Goal : Multi-Goal

Ground Truth Ground Truth Behavior Po\cy QRL objective) caL i QrL ORLobjective o .o Qrlearning caL (,o (stive RL
uasim,

n
(dynamics) (dataset) _(random actor)} with £metricdp @9 (wisG) : with £ metric dg + Quasimetric (MSG) Contrastive RL | 0 asimets

Distance to i
Top of Hill J
computatio :
failed to — —
converge 1

Distance to ¢ co’m;‘auc:atuon ' : o
Another State Q3 alled to H — H
‘ converge | : I |

RED methods are designed to find optimal value functions. CQL (and MSG) performs Q-Learning with a conservatism regularizer. Contrastive RL optimizes on-policy value of the behavior policy.

Distance to
Some State

Figure 4-3: Learned value functions on offline MountainCar. Each plot shows the estimated
values from every state towards a single goal (indicated in the leftmost column) as a 2-
dimensional image (velocity as x-axis, position as y-axis). Left: Ground truth distances,
as well as the (expected) distance for the behavior policy that generated training data.
Middle: Learned value functions for single-goal methods. Right: Learned value functions
for multi-goal methods. Only QRL accurately recovers the ground truth distance structure in
both settings, which crucially relies on the asymmetry of quasimetrics. Q-learning methods
generally fail in multi-goal settings. Their learned values, while improved with quasimetric
models, cannot capture the fine details. Contrastive RL only inaccurately estimates the
on-policy values.

Stable Maximization of dy. In practice, maximizing E[dy(s, g)] via gradient de-
scent tends to increase the weight norms of the late layers in dy. This often leads to
slow convergence since A needs to constantly catch up. Therefore, we instead place a
smaller weight on distances dy(s, g) that are already large and optimize E[¢p(dy(s, g))]
, where ¢ is a monotonically increasing convex function (e.g., affine-transformed
softplus). This is similar to the discount factor in Q-learning, which causes its MSE

loss to place less weight on transitions of low value.

Full Objective. Putting everything together, we implement QRL to jointly update
(0, \) according to

] —ESN state deE
m@mrg\lgg{ g~%goa| [¢(0 (5,9))] +

)\ (E(S7a7sl»r)’\’ptransition [relu(dleQE(S7 S/) + T)Q] - 62) . (4.12)

94

4.3.3 Analyses and Comparisons via Discretized MountainCar

We empirically analyze QRL and compare to previous works via experiments on the
MountainCar environment with a discretized state space. In this environment, the
agent observes the location and velocity of a car, and controls it to reach the top of a
hill. Due to gravity and velocity, the dynamics are highly asymmetrical. We discretize
the 2-dimensional state space into 160 x 160 bins so that we can compute the ground
truth value functions. We collected an offline dataset by running a uniform random

policy, and evaluated the learning result of various methods, including

e QRL, our method;

e Using QRL objective to train a symmetrical ¢, distance value function;
e Q-Learning with regular unconstrained () function class;

e Q-Learning with quasimetric function class;

e Contrastive RL (Eysenbach et al., 2022), which uses a contrastive objective

but estimates on-policy values;
e Contrastive RL with quasimetric function class;

e Conservative Q-Learning (CQL) (Kumar et al., 2020), which regularizes

Q-Learning to reduce over-confidence in out-of-distribution regions;

e Model Standard-deviation Gradients (MSG) (Ghasemipour et al., 2022),
a state-of-the-art offline RL algorithm using an ensemble of up to 64 CQL value

functions to estimate uncertainty and train policy;

e Diffuser (Janner et al., 2022), a representative trajectory modelling methods

with goal-conditioned sampling.

QRL can be used for both single-goal and multi-goal settings by specifying pgoai. For
methods that are not designed for multi-goal settings (MSG and Q-Learning), we
use Hindsight Experience Replay (HER; Andrychowicz et al. (2017)) to train the

goal-conditioned value functions.

95

Distance to Top of Hill Distance to Some State Distance to Another State

iter. 1000 iter. 10000 iter. 50000 iter. 100000 ; iter. 1000 iter. 10000 iter. 50000 iter. 100000 E

iter. 1000 iter. 10000 iter. 50000 iter. 100000

- g . I

: Quasxmetric |j] n n E
Groundtruths n

environment
dynamics

Q-Learning

»
—

Q-Learning

o) L

environment dataset
dynamics transitions

aset
transitions

environment dataset
dynamics transitions

Figure 4-4: Learning dynamics on the offline MountainCar setting. Each plot shows the
learned values from every state towards a single goal (indicated at the top) as a 2-dimensional
image (velocity as z-axis, position as y-axis). Yellow is greater distance (lower value function).
Bottom row shows the ground truth distances based on true environment dynamics, and
ground truth distances based on transitions appearing in dataset. QRL generally learns the
target value function structures much earlier than Q-learning methods.

Evaluation. Visually, we compare the learned values against ground truths (Fig-
ures 4-3 and 4-4). We test the agents’ control performances in both reaching the
original goal, top of the hill, as well as 9 distinct states (Table 4.1). A diverse set of
goals allows us to evaluate how well the value functions capture the true environment
dynamics structure. For QRL and Q-Learning, agents take the action that greedily
maximizes the estimated value for simplicity. We describe how to obtain Q-values for

QRL later in Section 4.3.4.

Q-Learning is the standard way to train optimal value functions for such discrete-
action space environments. Despite its popularity, many issues have been identified
with its temporal-difference training, such as slow convergence (Lyle et al., 2022;
Fujimoto et al., 2022). Figure 4-4 visualizes the learning dynamics of Q-Learning and
QRL, where vanilla Q-Learning indeed learns very slowly. While using a quasimetric
Q-function helps significantly, QRL still learns the V* structure much faster, and
better captures the true target V* even after training concludes (Figure 4-3). In
planning (Table 4.1), vanilla Q-Learning and (Q-Learning based) MSG struggle in

multi-goal settings. While Q-Learning with quasimetrics achieves comparable planning

96

performance with QRL, the higher-quality V* estimate from QRL is likely important
in more complex environments. Furthermore, with continuous action spaces, Q-
Learning requires a jointly learned actor, which (1) reduces to on-policy value learning
and (2) can have complicated training dynamics as the actor’s on-policy values may
not be a quasimetric (Theorem 4.2.1). QRL is exempt from such issues. In later
sections with experiments on online learning in more complex environments, simply
using quasimetric in traditional value training indeed greatly underperforms QRL

(Section 4.5.2).

Contrastive RL uses an arguably similar contrastive objective. However, it samples
positive pairs from the same trajectory, and does not enforce exact representation of
local costs. Hence, it estimates the on-policy values that generated the data (random
actor in this case). Indeed, Figure 4-3 shows that the Contrastive RL value functions
mostly resemble that of a random actor, and fails to capture the boundaries separating
states that have distinct values under optimal actors. As shown in Table 4.1, this

indeed leads to much worse control results.

Ablations. We highlight three ablation studies here:

e Asymmetry. QRL objective with symmetrical value functions underperforms

QRL greatly, suggesting the importance of asymmetry from quasimetrics.

e Optimality. Contrastive RL with quasimetric can be seen as a method that
uses quasimetric to train on-policy values. Thus, the learned values fail to

capture optimal decision structures. QRL instead enforces consistency with

observed local costs and maximal spreading of states, which leads to optimal

values and better performance.

e QRL Objective. While Q-Learning with quasimetrics plans comparably well
here , it learns more slowly than QRL (Figure 4-4) and fails to capture finer
value function details (Figure 4-3). As discussed above, Q-Learning (with or

without quasimetrics) also has potential issues with complex dynamics and/or

97

Method Task

Method .
Configuration Reach Top of Hill Reach 9 States
QRL Single-Goal 97.69 + o026 —
Multi-Goal 95.89 + o055 85.55 + 3.57
Q-Learnin — 98.74 + o019 —
& + Relabel 89.27 + 11.60 22.06 & .72
Contrastive RL — 83.91 + s.04 53.75 + 32.93
— 97.44 + o022 —
M
SG + Relabel 14.30 + o0.00 37.80 £ 820
Diffuser — 19.78 + 303 36.41 + 1.44
QRL Objective Single-Goal 95.42 1+ o.16 —
with Symmetric ¢ Distance Multi-Goal 96.13 + o2 73.27 + o84
Contrastive RL
T Quasimetric Q-Function — 83.90 + s.73 72.28 £ 463
Q-Learning
+ Quasimetric Q-Function + Relabel 96.33 + o.37 85.53 + 3.9
Oracle (Full Dynamics) — 100.00 100.00
Oracle (Dataset Transitions) — 69.22 75.89

Table 4.1: Control results on MountainCar. Scores are normalized returns to reach the
desired goal within 200 steps, averaged across all 160 x 160 starting states. Each row shows
evaluations of a method in a specific configuration with standard deviations from 5 seeds.
We highlight results that are > 95% of the best method.

continuous action space, while QRL does not have such problems and attain

much superior performance in such settings (see later Section 4.5.2).

Compared to existing approaches, QRL efficiently and accurately finds optimal
goal-conditioned value functions, showing the importance of both the quasimetric
structure and the novel learning objective. In the next section, we describe extensions
of QRL, followed by more extensive experiments on offline and online goal-reaching

benchmarks in Section 4.5.

4.3.4 From V* to)* and Policy

QRL’s optimal value V* estimate may be used directly in planning to control an agent.
A more common approach is to train a policy network w.r.t. to a Q-function estimate
(Hafner et al., 2019a). This section describes simple extensions to QRL that learn the
optimal Q-function @* and a policy.

98

Transition and Q-Function Learning. We augment the quasimetric model dy to

include an encoder f: S — Z:
do=(01,02) (30: 51) = dj, (for(50); far (51)). (4.13)

Since dy captures V*, finding the Q-function Q*(s, a; g) only requires knowing the
transition result, which we model by a learned latent transition 7: Z x A — Z. In
this section, for notation simplicity, we will drop the ()g, subscript, and use z L f (s),

22 f(s), 2 £T(z,a), and 2, = f(g).

*

Once with a well trained T', we can estimate Q*(s,a; g) as

d*(T(z,a),z,) —r=d°(Z,z,) —r = —Q*(s,a;9). (4.14)
latent transition transition cost

(In our experiments, transition cost —r is a constant, and thus omitted. Generally, T

can be extended to estimate r.)

Transition loss. Given transition (s,a, s’), we define:

Ltransition (57 a, SI; T7 d@) é (dz(élv Z/>2 + dz(z/7 ’2/>2)7

N | —

which is used to optimize both dy and T in conjunction with the QRL objective in

Equation (4.12).

Liransition €ncourages the predicted next latent 2’ to be close to the actual next
latent 2z’ w.r.t. the learned quasimetric function d*. This is empirically superior to a

simple regression loss on Z, whose scale is meaningless.

More importantly, the quasimetric properties allow us to directly relate Ly ansition

values to Q-function error:

Suppose d*(%',2')? + d*(#/, 2')* < §?, which means

d*(2',2') < § and d*(2/,2) <. (4.15)

99

For any goal g with latent z,, the triangle inequality implies

(2, 2g) = do(s', 9)| = |d*(2', 29) — d*(&', 29)| < 0.

estimated Q*(s,a;g) estimated V*(s;g)

In other words, if dy accurately estimates V*, our estimated QQ*(s, a; g) has bounded
error, for any goal g, even though we train with a local objective Ly ansition. Hence,
simply training the transition loss locally ensures that Q-function error is bounded
globally, thanks to using quasimetrics.

Based on this argument, our theoretical guarantees for recovering V* (Theo-
rems 4.3.1 and 4.3.2) can be potentially extended to @Q* and thus to optimal policy.

We leave this as future work.

Policy Learning. We train policy 7: § — A(A) to maximize the estimated Q-
function (Equation (4.14)):

min Es~psae [d*(T'(f (), a), f(g))]- (4.16)

s 9~Pgoal

Additionally, we follow standard RL techniques, training two critic functions and
optimizing the policy to maximize rewards from the minimum of them (Fujimoto and
Gu, 2021; Eysenbach et al.,; 2022). In online settings, we also use an adaptive entropy

regularizer (Haarnoja et al., 2018).

4.4 Related Work

Contrastive Approaches to RL. As discussed in Section 4.1, our objective bears
similarity to those of contrastive approaches. However, we also differ with them in

that we rely on (1) quasimetric models, (2) consistency with observed local costs, and

(3) mazimal spreading of states to learn the optimal value function. Most contrastive

methods satisfy none of these properties, and instead pull together states sampled
from the same trajectory for capturing on-policy value/information (Eysenbach et al.,

2022; Ma et al., 2022; Sermanet et al., 2018; Oord et al., 2018). Yang et al. (2020)

100

ensures exact representation of local cost, but also enforces non-adjacent states to
have distance 2 via a metric function, and thus cannot learn optimal values. Another
related line of work trains contrastive models to estimate the alignment between
current state and some abstract goal (e.g., text), which are then used as reward for
RL training (Fan et al., 2022). Despite the similar goal-reaching setting, their trained
model is potentially sensitive to training data, and estimates a density ratio rather

than the optimal cost-to-go.

Quasimetric Approaches to RL. Micheli et al. (2020) consider using quasimetrics
for multi-task planning, but does not use models that enforce quasimetric properties.
Liu et al. (2022) use quasimetric models to parametrize the Q-function, and shows
improved performance with DDPG (Lillicrap et al., 2015) and HER (Andrychowicz
et al., 2017) on goal-reaching tasks. These prior works mostly only estimate on-policy
value functions, and rely on iterative policy improvements to train policies. Zhang
et al. (2020b) use a similar quasimetric definition, but does not use quasimetric
models and focuses on hierarchy learning. In contrast, our work utilizes the full
quasimetric geometry to directly estimate V* and produce high-quality goal-reaching
agents. Additionally, the Wasserstein-1 distance induced by the MDP dynamics is
also a quasimetric. Durugkar et al. (2021) utilize its dual form to derive a similar
training objective for reward shaping, but essentially employ a different 1-dimensional
Euclidean geometry for each goal state and forgo much of the quasimetric structure in

V.

Metrics and Abstractions in RL. Many works explored learning different state-
space geometric structures. In particular, bisimulation metric also relates to optimality,
but is defined for single tasks where its metric distance bounds the value difference
Castro (2020); Ferns and Precup (2014); Zhang et al. (2020a). Generally speaking,
any state-space abstraction can be viewed as a form of distance structure, including
state embeddings that are related to value functions (Schaul et al., 2015; Bellemare
et al., 2019), transition dynamics (Mahadevan and Maggioni, 2007; Lee et al., 2020),
factorized dynamics (Chapter 5; (Fu et al., 2021)), etc. While our method also uses

101

MSG MSG + HER ~ MPPI with ~ MPPI with Diffuser with Diffuser with

Environment QRL Contrastive RL (L cyitic — 64) (#eritic = 64) GT Dynamics QRL Value DIffuser oR[Value Guidance Handcoded Controller

large 19152 £ 128 8165 £asre 159.30 +a0s0 59.26 £ 4070 5.1 1932 s220r T.98 & 134 10.08 + 207 128.13

medium 163.59 + a0 1011+ os 57.00 41720 57T £ oo 102 58.06 + 270 948 & 2m 1071 ¢ a0 127,64

Single-Goal umaze 7172 oo 9501 saezs 10110 £20s0 55.64 £ o1 332 74.85 £ 2130 44.03 & 225 4230 = asr 113.91
Average 142.27 62.29 105.80 63.56 16.17 50.74 20.50 21.03 123.23

large 18771 & ez 17264 & 53 — 44,57 £ 2530 8 37.73 s 1001 13.09 & 100 2126 & 20 146.94

medium 150.51 & arr 137.01 & 620 99.76 + oss 154 56.79 + 76 1921 & 350 33.39 & 2 119.97

Multi-Goal -

umaze 150.60 & o2 14243 1100 — 27.90 « 100 12 8749 & or 56.22 & a0 69.96 + 20 128.53

Average 162.94 150.69 — 57.41 21.53 60.67 2051 4154 131.81

Table 4.2: Planning results on maze2d. Scores represent average normalized episode return,
where 100 represents comparable performance with the d4rl reference handcoded controller.
Each column show evaluations of the same method configuration. E.g., we train goal-reaching
QRL agents and evaluate them in both single-goal and multi-goal settings. We highlight
results that are > 95% of the best method. In both evaluations, QRL agents significantly
outperform baselines, including MSG + HER with the ground truth reward function, and
MPPI with the ground truth environment dynamics. QRL value functions can also be used
with planning methods (MPPI) or trajectory sampling methods (Diffuser), and improve their
performances. MPPI with GT Dynamics scores are copied from Janner et al. (2022).

an encoder, our focus is to learn a quasimetric that directly outputs the optimal value

V* to reach any goal, rather than bounding it for a single task.

FetchReach - State FetchReach - Image FetchPush - State FetchPush - Image FetchSlide - State

o o &
5 & 5
s o =
5 & 5
o o =
5 & &
s o =
5 @ 5
s o =
5 & 5

Success Rate
o
IS
°
IS
)
=
°
=
)
=

o
o
o
o
o
N
o
N
o
N

s

0.0 0.0 0.0 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6
— Quasimetric RL Contrastive RL —— Goal-Conditioned DDPG + HER DDPG + HER + Quasimetric (MRN) DDPG + HER + Quasimetric (IQE)

Behavior Cloning (GCBC) "~ (Method by Liu et al. (2022)) 7 (Method by Liu et al. (2022))

Figure 4-5: Online learning performance on GCRL benchmarks. No method has access to
ground truth reward function. QRL learns faster and better than the baseline methods
across all environments for both state-based and image-based observations.

4.5 Benchmark Experiments

We evaluate QRL learned policies on standard goal-reaching benchmarks in both
offline and online settings. All results show means and standard deviations from 5

seeds. See Appendix C.3 for all experiment details.

102

4.5.1 Offline Goal-Reaching d4rl maze2d

Following Diffuser (Janner et al., 2022), we use maze2d environments from d4rl (Fu
et al., 2020), and evaluate the learned policies’ performance in (1) reaching the original
fixed single goal defined in d4rl as well as (2) reaching goals randomly sampled from
the state space. Similar to many offline works (e.g., Contrastive RL (Eysenbach et al.,
2022)), we adopt an additional behavior cloning loss for QRL policy optimization in
this offline setting.

QRL is a strong method for offline goal-reaching RL. In Table 4.2, QRL
significantly outperforms all baselines in both single-goal and multi-goal settings.
MSG uses a 64-critic ensemble and is computationally expensive. With only 2 critics,
QRL outperforms MSG by 20% on single-goal tasks and 188% on multi-goal tasks.
The Diffuser original paper reported results from a handcoded controller with sampled
states as input waypoints. We also report planning using Diffuser’s sampled actions,
which attains a much worse result. Regardless, QRL outperforms both Diffuser settings,
without using any external information/controller. Compared with Contrastive RL,
QRL again sees a big improvement, especially in the single-goal setting. Since the
dataset is not generated by agents trying to reach that goal, the on-policy values

estimated by Contrastive RL are likely much worse than the optimal values from QRL.

QRL learned value function improves planning and trajectory sampling
methods. Given the high quality of QRL value functions, we can use it to improve
other methods. MPPI (Williams et al., 2015) is a model-based planning method.
When planning with QRL Q-function, MPPI greatly improves over using ground
truth dynamics. We also experiment using QRL Q-function to guide Diffuser’s goal-
conditioned sampling, and obtain consistent and non-trivial improvements, especially

in multi-goal settings.

103

4.5.2 Online Goal-Reaching RL

Following Contrastive RL (Eysenbach et al., 2022) and Metric Residual Networks
(MRN; Liu et al. (2022)), we use the Fetch robot environments from the GCRL
benchmark (Plappert et al., 2018), where we experiment with both state-based

observation as well as image-based observation.

QRL quickly achieves high performance in online RL. Across all environ-
ments, QRL exhibits strong sample-efficiency, and learns the task much faster than
the alternatives. Only QRL and Contrastive RL learn in the two more challenging
state-based settings, FetchPush and FetchSlide. Compared to Contrastive RL, QRL
has 4.9x sample efficiency on state-based FetchPush and 2.7x sample efficiency on
state-based FetchSlide. Strictly speaking, image-based observation only contains
partial information of the true state, and thus has stochastic dynamics, which violates
the assumption of QRL. However, QRL still shows strong performance on image-
based settings, suggesting that QRL can potentially also be useful in other partially

observable and/or stochastic environments.

QRL outperforms Q-Learning with quasimetric models in complex envi-
ronments. Following the approach by Liu et al. (2022), we train standard DDPG
(Lillicrap et al., 2015) with relabelling and a quasimetric model Q-function. Essentially,
this jointly optimizes a quasimetric Q-function with Q-Learning and a deterministic
policy w.r.t. the Q-function. While similar approaches worked well on the simple
MountainCar environment (Section 4.3.3), they fail miserably here on more complex
continuous-control settings, as Q-Learning must estimate on-policy Q-function that
may not be a quasimetric (Theorem 4.2.1). DDPG with quasimetrics are the slowest
to learn on state-based FetchReach, and generally are among the least-performing
methods. The same pattern holds for two different quasimetric models: IQE and
MRN (proposed also by Liu et al. (2022)). In comparison, QRL (which also uses IQE
in our implementation) quickly learns the tasks. QRL is more general and scales far

better than simply using Q-Learning with quasimetrics.

104

4.6 Implications

In this work, we introduce a novel RL algorithm, QRL, that utilizes the equivalence
between optimal value functions and quasimetrics. In contrast to most RL algorithms

that optimize generic function classes, QRL is designed for using quasimetric models

to parametrize value functions. Combining quasimetric models with an objective that

captures local distances and mazimally spreads out states (Section 4.3.1), QRL provably

recovers the optimal value function (Section 4.3.1) without temporal-difference or
policy iteration, making it distinct from many prior approaches.

From thorough analyses on MountainCar, we empirically confirm the importance
of different components in QRL, and observe that QRL can learn value functions
faster and better than alternatives (Section 4.3.3). Our experiments on additional
benchmarks echo these findings, showing better control results in both online and
offline settings (Section 4.5). QRL can also be used to directly improve other RL
methods, and demonstrates strong sample efficiency in online settings.

These QRL results highlight the usefulness of quasimetrics in RL, as well as the
benefit of incorporating quasimetric structures into designing RL algorithms.

Below we summarize several exciting future directions.

QRL as Representation and World Model Learning. QRL can be also viewed
as learning a decision-aware representation (via encoder f) and a latent world model
(via latent dynamics T'). In this work, for fair comparison, we did not utilize such
properties much. However, combining QRL with techniques from these areas (e.g., esti-
mating multi-step return, auxiliary loss training) may yield even stronger performances
and/or more general QRL variants (e.g., better support for partial observability and

stochasticity).

Quasimetric Structures in Searching and Exploration. QRL results show
that quasimetrics can flexibly model distinct environments and greatly boost sample
efficiency. Such learned (asymmetrical) state-space distances potentially have further

uses in long-range planning and exploration. A locally distance-preserving quasimetric

105

is always a consistent and admissible heuristic (Pearl, 1984), which guarantees op-
timality in search algorithms like A* (Hart et al., 1968). Perhaps such exploration
ideas may be incorporated in a quasimetric-aware actor, or even for solvers of general

searching and planning problems.

Better Exploration for Structure Learning. In our and most RL works, online
exploration is done via noisy actions from the learned policy. Arguably, if an agent
is learning the structure of the environment, it should instead smartly and actively
probe the environment to improve its current estimate. Consider QRL as an example.
If current quasimetric estimate dg(sg, s1) is small but no short path connecting s to
s1 was observed, the agent should test if they are actually close w.r.t. the dynamics.
Additionally, one may use uncertainty/errors in learned quasimetric distances/dynam-
ics to derive new intrinsic exploration methods. Such advanced exploration may speed

up learning the geometric structures of the world, and thus better generalist agents.

More Quasimetric-Aware RL Algorithms. To our best knowledge, QRL is the
first RL method designed for quasimetric models. We hope the strong performance of
QRL can inspire more work on RL algorithms that are aware of quasimetric and/or

other geometric structures in RL.

106

Chapter 5

Denoised MDPs: Learning Latent
World Models Better Than the World
Itself

Quasimetric Reinforcement Learning (QRL) solves a given decision-making task
(Chapter 4), but it is only a half of the problem. The arguably more important half is
to formulate which decision-making task to solve.

The ability to separate signal from noise, and reason with clean abstractions, is
critical to intelligence. With this ability, humans can efficiently perform real world
tasks without considering all possible nuisance factors. How can artificial agents
do the same? What kind of information can agents safely discard as noises? In
this chapter, we categorize information out in the wild into four types based on
controllability and relation with reward, and formulate useful information as that
which is both controllable and reward-relevant. This framework clarifies the kinds
information removed by various prior work on representation learning in reinforcement
learning (RL), and leads to our proposed approach of learning a Denoised MDP in
a representation space that explicitly factors out certain noise distractors. Instead
of trying to solve the noisy real world, decision-making w.r.t. this Denoised MDP is
thus much simpler, more efficient and also more effective. Extensive experiments on

variants of DeepMind Control Suite and RoboDesk demonstrate superior performance

107

of our denoised world model over using raw observations alone, and over prior works,
across policy optimization control tasks as well as the non-control task of joint position
regression.
This chapter is based on published work:
1. Denoised MDPs: Learning World Models Better Than the World Itself with
co-authors Simon S. Du, Antonio Torralba, Phillip Isola, Amy Zhang, and
Yuandong Tian at the International Conference on Machine Learning (ICML)

2022 (Wang et al., 2022).

5.1 Introduction

The real world provides us a plethora of information, from microscopic physical inter-
actions to abstracted semantic signals such as the latest COVID-19 news. Fortunately,
processing each and every signal is unnecessary (and also impossible). In fact, any
particular reasoning or decision often only relies on a small portion of information.

Imagine waking up and wanting to embrace some sunlight. As you open the curtain,
a nearby resting bird is scared away and you are pleasantly met with a beautiful sunny
day. Far away, a jet plane is slowly flying across the sky.

This may seem a simple activity, but in fact highlights four distinct types of
information (see Figure 5-1), with respect to the goal of letting in as much sunlight as
possible:

e Controllable and reward-relevant: curtain, influenced by actions and affect-

ing incoming sunlight;

e Controllable and reward-irrelevant: bird, influenced by actions but not

affecting sunlight;

e Uncontrollable and reward-relevant: weather, independent with actions

but affecting sunlight;

e Uncontrollable and reward-irrelevant: plane, independent with both ac-

tions and the sunlight.

Our optimal actions towards the goal, however, only in fact depend on information

108

Reward- Reward-
Relevant Irrelevant

Uncontrollable

Controllable

(a) GOAL: Letting in as much sunlight as possible.

Denoise

(b) Optimal control only relies on information that is both
controllable and reward-relevant. Good world models
should ignore other factors as noisy distractors.

Figure 5-1: Illustrative example: (a) Four distinct kinds of information in the scenario
described in Section 5.1, where the person desires to increase the amount of sunlight let into
the room. Their opening of the curtain scares away the bird. (b) A denoised world model
only includes a small subset of all information.

109

that is controllable and reward-relevant, and the three other kinds of information
are merely noise distractors. Indeed, no matter how much natural sunlight there is
outside, or how the plane and the bird move, the best plan is always to open up the

curtain.

When performing a particular task, we humans barely think about the other three
types of information, and usually only plan on how our actions affect information
that is controllable and reward-relevant. Our mental model is an abstract and

condensed version of the real world that is actually better suited for the task.

The notion of better model /data is ubiquitous in data science and machine learning,.
Algorithms rarely perform well on raw noisy real data. The common approach is to
perform data cleaning and feature engineering, where we manually select the useful
signals based on prior knowledge and/or heuristics. Years of research have identified
ways to extract good features for computer vision (Lowe, 1999; Donahue et al., 2014),
natural language processing (Elman, 1990; Mikolov et al., 2013), reinforcement learning
(RL) (Mahadevan and Maggioni, 2007; Bellemare et al., 2019), etc. Similarly, system
identification aligns real observation with a predefined set of abstract signals/states.
Yet for tasks in the wild (in the general form of (partially observable) Markov Decision
Processes), there can be very little prior knowledge of the optimal set of signals. In
this work, we ask: can we infer and extract these signals automatically, in the form of

a learned world model?

The general idea of a mental world model have long been under active research in
philosophy and social science (Craik, 1952; Dennett, 1975), cognitive science, where an
intuitive physics model is hypothesized to be core in our planning capabilities (Spelke
and Kinzler, 2007), and in reinforcement learning, where various methods investigate

state abstractions for faster and better learning (Sutton, 1991, 1981).

In this work, we explore this idea within the context of machine learning and rein-
forcement learning, where we aim to make concrete the different types of information
in the wild, and automatically learn a world model that removes noise distractors and
is beneficial for both control (i.e., policy optimization) and non-control tasks. Toward

this goal, our contributions are

110

oW

Ctrl| S S

oroL Rk

(a) Transition without useful (b) Transition that factorizes out (c¢) Transition that factorizes
structure. s may contain any uncontrollable information in out uncontrollable y and reward-
type of information. and yp. irrelevant z.

Figure 5-2: MDP transition structures consisting of dynamics and reward functions. Unlike
the regular structure of (a), (b, c) factorized (yet still general) structures inherently separate
information into controllable (Ctrl) versus uncontrollable (Ctrl), and reward-relevant (Rew)
versus reward-irrelevant (Rew). Presence of a variable in a cell means possible containing of
respective information. E.g., in (c), z can only contain reward-irrelevant information. In
(b, ¢), the x dynamics form an MDP with less noise and sufficient for optimal planning. Our
Denoised MDP (see Section 5.3) is based on these two factorizations.

e We categorize information into four distinct kinds as in Figure 5-1, and review

prior approaches under this framework (Section 5.2).

e Based on the above framework, we propose Denoised MDPs, a method for

learning world models with certain distractors removed (Section 5.3).

e Through experiments in DeepMind Control Suite and RoboDesk environments,
we demonstrate superior performance of policies learned our method, across

many distinct types of noise distractors (Sections 5.5.1 and 5.5.2).

e We show that Denoised MDP is also beneficial beyond control objectives, im-

proving the supervised task of robot joint position regression (Section 5.5.1).

5.2 Different Types of Information in the Wild

In Section 5.1, we illustrated the four types of information available in the wild w.r.t.
a task. Here we make these notions more concrete, and relate them to existing works.

For generality, we consider tasks in the form of Markov Decision Processes (MDPs),

111

described in the usual manner: M 2 (S, A, R, P,p,,) (Puterman, 1994), where S is
the state space, A is the action space, R: & — A([0, "max)) defines the reward random
variable R(s") received for arriving at state s’ € S, P: S x A — A(S) is the transition
dynamics, and p,, € A(S) defines the distribution of initial state. We use A(A)
to denote the set of all distributions over A. P and R define the most important
components of a MDP: the transition dynamics P[s" | s, a] and the reward function
P[r | §']. Usually, the objective is to find a policy 7: S — A(A) acting based on
current state, that maximizes the expected cumulative (discounted) reward.

Indeed, MDPs provide a general formulation that encompasses many tasks. In fact,
the entire real world may be viewed as an MDP with a rich state/observation space S
that contains all possible information/signal. For an artificial agent to successfully
perform real world tasks, it must be able to process observations that are incredibly
rich and high-dimensional, such as visual or audio signals.

We characterize different types of information in such observations by considering
two intuitive notions of “noisy and irrelevant” signals: (1) uncontrollable information
and (2) reward-irrelevant information. Such factors can often be ignored without
affecting optimal control, and are referred to as noise distractors.

To understand their roles in MDPs, we study different formulations of the transition
dynamics and reward functions, and show how different structures naturally leads to
decompositions that may help identify such distractors. Removing these distractors
can thus transform the original noisy MDP to a clean denoised one, to be used in
downstream tasks.

For starters, the most generic transition model in Figure 5-2a has little to no
structure. The state s can contain both the useful signals and noise distractors.

Therefore, it is not directly useful for extracting important information.

5.2.1 Controllability

Intuitively, if something is not controllable, an agent might be able to do well without
considering it. Yet it is not enough to only require some variable to be unaffected by

actions (e.g., wind directions should not be ignored while sailing). Instead, we focus

112

on factors that simply evolve on their own, without influencing or being influenced by
others.

Not all such information can be safely ignored, as they still may affect reward
(e.g., traffic lights when driving). Fortunately, in the usual objective of maximizing
expected return, we can ignore ones that only additively affect reward.

Concretely, if an MDP transition can be represented in the form of Figure 5-2b, we
say variables 1, and yr are uncontrollable information, as they evolve independently
of actions and do not affect controllable x. Here yp (additively) affects reward, but
can be ignored. One can safely discard both v, and yy as noise distractors. Operating

with the compressed MDP of only z is sufficient for optimal control.

5.2.2 Reward-Relevance

Among controllable information, there can still be some that is completely unrelated to
reward. In Figure 5-1, the bird is affected by the opening curtain, but is irrelevant to
the task of letting in sunlight. In such cases, the information can be safely discarded,
as it does not affect the objective.

If an MDP transition can be represented in the form of Figure 5-2¢, we say z is
reward-irrelevant because it evolves by potentially using everything (i.e., all latent
variables and actions), but crucially does not affect anything but itself.

Similar to uncontrollable information, = (and y) is a noise distractor that can be
discarded. The compressed MDP of only = contains all signals needed for optimal

control.

5.2.3 Which Information Do Existing Methods Learn?

In RL, many prior work have explored state abstractions in some form. Here we cast
several representative ones under the framework described above, and show which
kinds of information they learn to remove, summarized in Figure 5-3, together with
our proposed method (explained in Section 5.3). Below we discuss each prior work in

detail.

113

Rew Rew

Reconstruction-Based
Model-Based RL il 7 | 7
(e.g., SLAC (Lee et al., 2019), Model-Based
Dreamer (Hafner et al., 2019a)) Cerl| /
Rew Rew
Bisimulation Ctrl| v | X
(e.g., Ferns et al. (2004), Model-Free
Castro (2020), Zhang et al. (2020a)) Ctrl| / | X
Rew Rew
Task Informed Ctrlf v | ?
Abstractions (TIA) Model-Based
(Fu et al., 2021) Ctrl| v | 7
Rew Rew
Denoised MDP Ctrlf / | /
(Figure 5-2b variant) Model-Based
(Our method from Section 5.3) Ctrl| X
Rew Rew
Denoised MDP Ctrlf v/ | X
(Figure 5-2c¢ variant) Model-Based
(Our method from Section 5.3) Ctrl| X | X
Information Grid Legend: Kept Reduced

Depending on how the information
* | is integrated in observations

Figure 5-3: Categorization of information learned and removed by various methods with
distinct formulations.

Reconstruction-Based Model-Based RL. Many model-based RL methods learn
via reconstruction from a single latent code, often as a result of a variational formulation
(Hafner et al., 2019a,b; Lee et al., 2019). The latent code must try to compress all

information present in the observation, and necessarily contains all types of information.

Bisimulation. Bisimulation defines a state abstraction where states aggregated
together must have the same expected return and transition dynamics up to the
abstraction (Givan et al., 2003), and is known to optimally ignore reward-irrelevant
information (Ferns et al., 2004). While its continuous version, bisimilation metric, is
gaining popularity, learning them is computationally difficult (Modi et al., 2020). Even

with many additional assumptions, it is generally only possible to learn an on-policy

114

variant that loses the above guarantee (Castro, 2020; Zhang et al., 2020a).

Task Informed Abstractions (TIA). TIA (Fu et al., 2021) extends Dreamer by
modelling two independent latent MDPs, representing signal and noise. The noise
latent is enforced to be independent with reward and reconstruct the observation as
well as possible. Reconstructions from each latent are composed together using an
inferred mask in pixel-space, to form the full reconstruction for the reconstruction loss.
Because of its special structure, TIA can remove reward-irrelevant noise distractors
that are present via pixel-wise composing two images from independent processes (e.g.,
agent moving on a noisy background), but not general ones (e.g., a shaky camera

affecting both the agent and the noisy background).

Predictive Information, Data Augmentation, etc. Another set of researches
learn state representation that only contains information useful for predicting future
states (e.g., CPC (Oord et al., 2018) and PI-SAC (Lee et al., 2020)) or augmented
views of the current state (e.g., CURL (Laskin et al., 2020a)). These methods do not
guarantee removal of any of the three redundant piece of information identified above.
Non-i.i.d. noises (e.g., people moving in background) are predictive of future and may
be kept by CPC and PI-SAC. The performance of augmentation-based methods can
critically rely on specific types of augmentation used and relevance to the tasks. As

we show in experiments (see Section 5.5), indeed they struggle to handle certain noise

types.

5.2.4 Possible Extensions to Further Factorizations

The above framework is sufficient for characterizing most prior work and related tasks,
and can also be readily extended with further factorized transition structures. F.g.,
if an independent process confounds a signal process and a noise process, fitting the
Figure 5-2¢ structure must group all three processes into x (to properly model the
dependencies). However, a further factorization shows that only considering the signal

and the confounding processes is theoretically sufficient for control. We leave such

115

extensions as future work.

5.3 Denoised MDPs

Figures 5-2b and 5-2¢ show two special MDP structures that automatically identify
certain information that can be ignored, leaving x as the useful information (which
also forms an MDP). This suggests a naive approach: directly fitting such structures

to collected trajectories, and then extract x.

However, the same MDP dynamics and rewards can be decomposed as Figures 5-
2b and 5-2c in many different ways. In the extreme case, x may even contain all
information in the raw state s, and such extraction may not help at all. Instead, we
desire a fit with the minimal , defined as being least informative of s (so that removal
of the other latent variables discards the most information possible). Concretely, we
aim for a fit with least I({x;}1;; {s¢:}, | {a:}~,), the mutual information = contains
about s over T steps. Then from this fit, we can extract a minimal Denoised MDP
of only z. For notation simplicity, we use bold symbols to denote variable sequences,

and thus write, e.g., I(x;s | a).

Practically, we consider regularizing model-fitting with I(x;s | @). As we show
below, this amounts to a modification to the well-established variational objective
(Hafner et al., 2019a). The resulting method is easy-to-implement yet effective, enabling
clean removal of various noise distractors the original formulation cannot handle (see

Section 5.5).

We instantiate this idea with the structure in Figure 5-2c. The Figure 5-2b
formulation can be obtained by simply removing the z components and viewing v as

combined yz and

116

The transition structure is modeled with components:

péxt) £ polae | 1121,) (x dynamics)
po(rs | @) (x reward)
5" 2 po(yir | i) (y dynamics)
po(ry | 1) (y reward)
pém 2 po(z | @4,y 211, Q) (= dynamics)
po(st | e, ye, 21).- (obs. emission)

Consider training data in the form of trajectory segments s, a,r sampled from some
data distribution pyata (e.g., stored agent experiences from a replay buffer). We perform

model learning by minimizing the negative log likelihood:

Lae(0) £ —Egarap, [logpe (s.7 | a)].

To obtain a tractable form, we jointly learn three variational posterior components

(i.e., encoders):

ql(ft) 2 0u(@ | Tim, Yooty 21, St ap) (x posterior)
ngyt) é q¢(yf | Li—1,Yt—15 Zt—15 St at) (y posterior)
qf;‘) = %(Zt | Tty Yt, St at)a (Z posterior)

whose product defines the posterior g, (x,y, z | 8,a)'. We choose this factorized form

based on the forward (prior) model structure of Figure 5-2c.

Then, the model can be optimized w.r.t. the standard variational bound on log

'Following Dreamer (Hafner et al., 2019a), we define posterior of first-step latents gy (1, v1, 21 |
s1) £ qy(+, -, -]0,0,0,51,0), where 0 is the all zeros vector of appropriate size.

117

likelihood:

EMLE(G) =min E E [—logpg(s,r | a:,y,z,a)

Y s,a,r T,Y,z~
£ »Crecon (97 w)

(QEN:RY)

T T

3 D (0 55 + 37 D (a8 || 25
=1 =1

~~

2 Lii-2(0,9) = Lii-y (6, 9)

T
+ Z DgL (qq(;t) H Pé%)) }) (5.1)
t=1

£ Lri--(0,9)

where equality is attained by optimal g, that is compatible with py, ¢.e., gy, is the

exact posterior of py.

The mutual information regularizer I(x; s | @), using a variational formulation,
can be written as

I(z;s]a)= mein Lx1-.(0,1), (5.2)

with equality attained when ¢, and py are compatible. The appendix describes this

derivation in detail.

Therefore, for a regularizer weight of ¢ > 0, we can optimize Equations (5.1)

and (5.2) together as

meinﬁMLE(H) +c-I(x;s]|a)
= I?%bn Erecon<97 w) + (1 + C) : ‘CKL'I(67 w)
+ Lkr-y(0,0) + Lki--(0, 7). (5.3)

Recall that we fit to the true MDP with the structure of Figure 5-2c, which inherently
guarantees all useful information in the x latent variable. As the regularizer ensures
learning the minimal x latents, the learned model extracts an MDP of condensed
useful information with X as the denoised state space, pg(z’ | ,a) as the transition
dynamics, pg(r, | ') as the reward function. This MDP is called the Denoised MDP,

as it discards the noise distractors contained in y and 2. Additionally, we also obtain

118

Algorithm 1 Denoised MDP

Input: Model py. Posterior encoder gy. Policy m: X — A(A).
Policy optimization algorithm P1-OPT.
Output: Denoised MDP of = in pg. Encoder gy. Policy .

while training do

Collect trajectories with 7 acting on g, encoded outputs

Train pg and g, with Equation (5.4) on (s, a,r)

Sample x ~ qy(x | s,a)

Compute 7 = E [pg(ry |)]
10: Train 7 by running PI-OPT on (z, a,7)
11: end while

1:
2
3
4:
5: Sample a batch of (s, a,r) segments from reply buffer
6.
7
8
9

qy(| s,a) as the encoder mapping from raw noisy observation s to the denoised .

A loss variant for improved stability. When using a large ¢ > 0 (e.g. when the
environment is expected to be very noisy), Equation (5.3) contains to a term with a
large weight. Thus Equation (5.3) often requires learning rates to be tuned for different
c. To avoid this, we use the following loss form that empirically has better training

stability and does not require tuning learning rates w.r.t. other hyperparameters:
ng%/}n Liecon + @+ (Lxi-¢ + BLkL-y + BLKL--) , (5.4)

where 6, 1 in arguments are omitted, and the hyperparameters are a > 0 and 0 < g < 1.
Here (3 is bounded, where 8 = 1 represents no regularization. « is also generally small
and simply chosen according to the state-space dimensionality (see the appendix;
a € {1,2} in our experiments). This form is justified from the observation that in
practice we use isotropic Gaussians with fixed variance to parameterize the distributions
of observation py(s | ...) and reward py(r | ...), where scaling log likelihoods is
essentially changing the variance hyperparameter. Thus, Equation (5.4) is effectively

a scaled Equation (5.3) with different variance hyperparameters.

119

Online algorithm with policy optimization. The model fitting objective of
Equation (5.4) can be used in various settings, e.g., offline over a collected trajectory
dataset. Without assuming existing data, we explore an online setting, where the
training process iteratively performs (1) exploration, (2) model-fitting, and (3) policy
optimization, as shown in Algorithm 1. The policy 7: X — A(A) soley operates on
the Denoised MDP of z, which has all information sufficient for control. For policy
optimization, the learned posterior encoder ¢y (x | s, a) is used to extract information
from the raw trajectory (s, a,r), obtaining transition sequences in X’ space. Paired
with the py(r; |) rewards, we obtain (x,a,r,) as trajectories collected from the
Denoised MDP on z. Any general-purpose MDP policy optimization algorithm may
be employed on these data, such as Stochastic Actor-Critic (SAC) (Haarnoja et al.,
2018). We can also utilize the learned differentiable Denoised MDP, e.g., optimizing
policy by backpropagating through additional roll-outs from the model, as is done in
Dreamer.

While presented in the fully observable setting, Denoised MDP readily handles
partial observability without extra changes. In the appendix, we discuss this point in

details, and provide a guideline for choosing hyperparameters «;, 3.

5.4 Related Work

Model-Based Learning for Control jointly learns a world model and a policy.
Such methods often enjoy good sample efficiency on RL tasks with rich observations.
Some formulations rely on strong assumptions, e.g., deterministic transition in Deep-
MDP (Gelada et al., 2019) and bilinear transition in FLAMBE (Agarwal et al., 2020).
Most general-setting methods use a reconstruction-based objective (Hafner et al.,
2019b; Kim et al., 2020; Ha and Schmidhuber, 2018; Lee et al., 2019). Among them,
Dreamer (Hafner et al., 2019a) trains world models with a variational formulation and
optimizes policies by backpropagating through latent-space rollouts. It has proven
effective across a variety of environments with image observations. However, such

reconstruction-based approaches can struggle with the presence of noise distractors.

120

TIA (Fu et al., 2021) partially addresses this limitation (see Section 5.2.3) but can

not handle general distractors, unlike our method.

Representation Learning and Reinforcement Learning. Our work automates
selecting useful signals from noisy MDPs by learning denoised world models, and can
be viewed as an approach for learning general representations (Donahue et al., 2014;
Mikolov et al., 2013; He et al., 2019; Huh et al., 2016). In model-free RL, various
methods learn state embeddings that are related to value functions (Schaul et al., 2015;
Bellemare et al., 2019), transition dynamics (Mahadevan and Maggioni, 2007; Lee
et al., 2020), recent action (Pathak et al., 2017), bisimulation structure (Ferns et al.,
2004; Castro, 2020; Zhang et al., 2020a), data augmentations (Laskin et al.; 2020a) etc.
While most methods adopt self-predictive auxiliary losses to learn representations (Ni
et al., 2024), our work primarily uses the factorized world model structure to extract
good abstractions. Recently, Eysenbach et al. (2021) proposes a regularizer similar to
ours but for the different purpose of robust compressed policies. The theoretical work
by Efroni et al. (2021) is closest to our setting but concerns a more restricted set of
distractors (ones both uncontrollable and reward-irrelevant). Unlike Denoised MDP,
their proposed algorithm is largely impractical and does not produce a generative

model of observations (i.e., no decoder).

System Identification. Our work is related to system identification, where an
algorithm infers from real world an abstract state among a predefined limited state
space, e.g., pose estimation (Riza Alp Giiler, 2018; Yen-Chen et al., 2021) and material
estimation (Hahn et al., 2019). Such results are useful for robotic manipulation
(Manuelli et al., 2019), image generation (Gu et al., 2019), etc. Our setting is not
limited to a predefined abstract state space, but instead focuses on automatic discovery

of such valuable states.

121

Blocks on Desk: TV Image Green-ness: Green Button & Light: Robot Joints: TV Semantic Content: Shaky/FIlckerlng Camera & Lights:
Ctrl & Rew N Ctrl & Rew Ctrl & Rew Ctrl & Rew Ctrl & Rew Ctrl & Rew

Env.
Rollout

Obs.

Reward2
0

Dreamer g.con |
(E[return] = 519) -

TIA
(E[return] = 436) Signal

r
E
Noise |
i
L=

s
:{
5
F
ik

-F
1}
e
5
i

¢
i
13
IS
I
n

Den0|sed
a-n m-.' L-Jhl' m'
‘ ot))
- b o ! =g W = =

Figure 5-4: Visualization of learned models for RoboDesk by using decoders to reconstruct from
encoded latents. For TTA and Denoised MDP, we visualize how they separate information as
signal versus noise. In each row, what changes over frames is the information modeled by
the corresponding latent component. E.g., in the bottom row, only the TV content, camera
pose and lighting condition change, so Denoised MDP considers these factors as noises, while
modelling the TV hue as signal. See our website for clearer video visualizations.

£
'l
[
t
i

5.5 Experiments

In this section, we contrast our method with existing approaches on environments
with image observations and many distinct types of noise distractors. Our experiments
are designed to include a variety of noise distractors and to confirm our analysis on

various methods in Section 5.2.3.

Environments. We choose DeepMind Control (DMC) Suite (Tunyasuvunakool
et al., 2020) (Section 5.5.2) and RoboDesk (Kannan et al., 2021) (Section 5.5.1) with
image observations, where we explore adding various noise distractors. Information
types in all evaluated environments are categorized in Table D.1 of the appendix.

Tasks include control (policy optimization) and a non-control task of regressing robot

122

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

joint position from RoboDesk image observations.

Methods. We compare not only model-based RL methods, but also model-free

algorithms and general representation learning approaches, when the task is suited:

e Model Learning: Denoised MDP (our method), Dreamer (Hafner et al., 2019a),
and TTA (Fu et al., 2021);

e Model-Free: DBC (Zhang et al., 2020a), CURL (Laskin et al., 2020a), PI-SAC
(Lee et al., 2020) (without data augmentation for a fair comparison of its core
predictive information regularization against other non-augmenting methods),
and SAC on true state-space (Haarnoja et al., 2018) (instead of using image

observations, this is roughly an “upper bound”);

e General Image Representation Learning for Non-Control Tasks: Con-
trastive learning with the Alignment-+Uniformity loss (Wang and Isola, 2020) (a
form of contrastive loss theoretically and empirically comparable to the popular

InfoNCE loss (Oord et al., 2018)).

Model-learning methods can be used in combination with any policy optimization
algorithm. For a complete comparison for general control, we compare the models
trained with these two policy learning choices: (1) backpropagating via the learned
dynamics and (2) SAC on the learned latent space (which roughly recovers SLAC
(Lee et al., 2019) when used with an unfactorized model such as Dreamer).

Most compared methods do not apply data augmentations, which is known to
strongly boost performance (Yarats et al., 2021; Laskin et al., 2020b). Therefore,
for a fair comparison, we run PI-SAC without augmentation to highlight its main
contribution—representation of only predictive information.

All results are aggregated from 5 runs, showing mean and standard deviations.
The appendix contains more details, hyperparameter studies, and additional results.
Our website presents videos showing clearer video visualizations.

For Denoised MDP, we use the Figure 5-2b variant. Empirically, the Figure 5-2c

variant leads to longer training time and sometimes inferior performance (perhaps

123

due to having to optimize extra components and fit a more complex model). The

appendix provides a comparison between them.

5.5.1 RoboDesk with Various Noise Distractors

We augment RoboDesk environment with many noise distractors that models realistic
noises (e.g., flickering lights and shaky camera). Most importantly, we place a large
TV in the scene, which plays natural RGB videos. A green button on the desk controls
the TV’s hue (and a light on the desk). The agent is tasked with using this button
to shift the TV to a green hue. Its reward is directly affected by how green the TV
image is. The first row of Figure 5-4 shows a trajectory with various distractors
annotated. All four types of information exist (see Table D.1), with the controllable
and reward-relevant information being the robot arm, the green button, the light on

the desk, and the TV screen green-ness.

Only Denoised MDP learns a clean denoised model. Using learned decoders,
Figure 5-4 visualizes how the models captures various information. As expected,
Dreamer model captures all information. TIA also fails to separate any noise distractors
out (the Noise row fails to capture anything), likely due to its limited ability to model
different noises. In contrast, Denoised MDP cleanly extracts all controllable and
reward-relevant information as signals—the Signal row only tracks changes in robot
arms, green button and light, and the TV screen green-ness. All other information is
modeled as noises (see the Noise row). We recommend viewing video visualizations on

our website.

Denoised models improve policy learning. Figure 5-4 also shows the total
episode return achieved by policies learned with each of the three models, where
the cleanest model from Denoised MDP achieves the best performance. Aggregating
over 5 runs, the complete comparison in Figure 5-5 shows that Denoised MDP (with
backpropagating via dynamics) generally outperforms all baselines, suggesting that

its clean models are helpful for control.

124

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

Model Learning Denoised MDP —— Dreamer —— TIA Model-Free —— DBC —— CURL PI-SAC (No Augmentation)
—=— State-Space SAC with Modified Reward

Non-RL Methods For Joint Position Regression —— Contrastive From Scratch
Policy Optimization Policy Optimization Joint Position Regression Joint Position Regression
Backpropagate via Dynamics SAC (Latent-Space) Final Test MSE vs. Training Set Size Learning Curve for [Train Set|=10%
700 700 B 0251\
2x10°! 024 L‘»/”"__
€ 600 600 W 0.23
= S PSSR ' I N PR8I BTE TR AT M L Mgt S
2 500 500 ’(\/t‘:\)ﬂ z 022
1 Mg RPN 8 _
) 14
g WN QY & 10 0.21
o 1 ‘(71‘
0 400 4 400 4MW~/M] 0.20
d o r |
6x1072
3004 3004 | * 0.19
. — ax10? 018 ; . . .
00 02 04 06 08 10 00 02 04 06 08 1.0 025 050 075 1..00 125 1.50 0 20 40 60 80 100
Environment Steps le6 Environment Steps 1le6 Training Set Size 1e5 Training Epoch

Figure 5-5: Policy optimization on RoboDesk. Figure 5-6: Performance of finetuning various
We give state-space SAC a less noisy reward encoders to infer joint position from RoboDesk

so it can learn (see appendix). image observation.
Policy Learning: Backprop via Dynamics Policy Learning: SAC (Latent-Space) DBC PLSAC CURL State-Space SAC
i i (No Aug.) (Use Aug.) (Upper Bound)
Denoised MDP TIA Dreamer Denoised MDP TIA Dreamer
Noiseless 8014 & o6 7697+ o1 848.6 £1sra 5870 & ser 480.2 41255 5754 £ ez 2974 £125 2464 2506 4173 1en 9103
Video Background — 597.7 £ urs 407.1 2054 227.8 £1027 309.8 £ 150 318.1 s1zar 188.7 & 72 188.0 ters 1317 2200 1780 - 1iss 9103
Vfﬁ\?oiaycgg;“:;fd 563.0 +1a0 2612 t204 2124 & sor 2882 £1zma 1073 41212 218.2 & ssa 799 10 1525 £i26 3543 iwa 9108
Video Background =, 0 051 7 s 08.6 + s 18685 srr 1265 4w 105.2 + sss 680 sans 916+ 7o 3904+ wo 0103

+ Camera Jittering

Table 5.1: DMC policy optimization results. For each variant, we aggregate performance
across three tasks (Cheetah Run, Walker Walk, Reacher Easy) by averaging. Denoised MDP
performs well across all four variants with distinct noise types. Bold numbers show the
best model-learning result for specific policy learning choices, or the best overall result. On
Camera Jittering, Denoised MDP greatly outperforms all other methods except for CURL,
which potentially benefits from its specific data augmentation choice (random crop) on this
task, and can be seen as using extra information (i.e., knowing the noise distractor form). In
fact, Denoised MDP is the only method that consistently performs well across all tasks and
noise variants, which can be seen from the full results in the appendix.

Denoised models benefit non-control tasks. We evaluate the learned represen-
tations on a supervised non-control task—regressing the robot arm joint position from
observed images. Using various pretrained encoders, we finetune on a labeled training
set, and measure mean squared error (MSE) on a heldout test set. In addition to RL
methods, we compare encoders learned via general contrastive learning on the same
amount of data. In Figure 5-6, Denoised MDP representations lead to best converged
solutions across a wide range of training set sizes, achieve faster training, and avoid
overfitting when the training set is small. DBC, CURL and PI-SAC encoders, which
take in stacked frames, are not directly comparable and thus absent from Figure 5-6.

In the appendix, we compare them with running Denoised MDP encoder on each frame

125

and concatenating the output features, where Denoised MDP handily outperforms

both DBC and CURL by a large margin.

Walker Walk Cheetah Run
Cheetah Run Reacher Easy Video Background Video Background
Noiseless Video Background + N0|sy Sensor + Camera Jltterlng
[T N F Tyt '

Env. Obs.
Rollout

Reward“: A N:

Signal
TIA
Noise
E[return] =791.6
Slgnal V\f’
Denoised
MDP
Noise ""/ PRI ;”{

E[return] =314.8

E[return] = 800.8 E[return] = 614.6 E[return] = 814.6

Figure 5-7: Visualization of the different DMC variants and factorizations learned by TIA and
Denoised MDP. F.q., bottom Noise row often shows a static agent but varying background,
indicating that only the background is modeled as noises in Denoised MDP. Visualizations
of full reconstructions are in appendix. See our website for clearer video visualizations.

5.5.2 DeepMind Control Suite (DMC)

To evaluate a diverse set of noise distractors, we consider four variants for each DMC

task (see Figure 5-7 top row):

Noiseless: Original environment without distractors.

Video Background: Replacing noiseless background with natural videos

(Zhang et al., 2020a) (Ctrl + Rew).

Video Background + Sensor Noise: Imperfect sensors sensitive to intensity

of a background patch (Ctrl + Rew).

Video Background + Camera Jittering: Shifting the observation by a
smooth random walk (Ctrl + Rew).

126

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

Denoised MDP consistently removes noise distractors. In Figure 5-7, TIA
struggles to learn clean separations in many settings. Consistent with analysis in
Section 5.2.3, it cannot handle Sensor Noise or Camera Jittering, as the former is
reward-relevant noise that it cannot model, and the latter (although reward-irrelevant)
cannot be represented by masking. Furthermore, it fails on Reacher Easy with Video
Background, where the reward is given by the distance between the agent and a
randomly-located ball. TIA encourages its noise latent to be independent of reward,
but does not prevent it from capturing the controllable agent. These failures lead to
either TTA trying to model everything as useful signals, or a badly-fit model (e.g.,
wrong agent pose in the last column). In contrast, Denoised MDP separates out noise
in all cases, obtaining a clean and accurate MDP (its Signal rows only have the agent

moving).

Denoised models consistently improve policy learning. We evaluate the
learned policies in Table 5.1, where results are aggregated by the noise distractor
variant. Other methods, while sometimes handling certain noise types well, struggle to
deal with all four distinct variants. TIA, as expected, greatly underperforms Denoised
MDP under Noisy Sensor or Camera Jittering. CURL, whose augmentation
choice potentially helps handling Camera Jittering, underperforms in other three
variants. In contrast, Denoised MDP policies consistently perform well for all noisy

variants and also the noiseless setting, regardless of the policy optimizer.

Model-based approaches have a significant lead over the model-free ones, as seen
from the DBC results in Table 5.1 and the well-known fact that direct model-free
learning on raw image observations usually fails (Laskin et al., 2020b; Kostrikov et al.,
2020; Yarats et al., 2021). These results show that learning in a world model is useful,

and that learning in a denoised world model is even better.

127

5.6 Implications

In this work we explore learning denoised and compressed world models in the presence
of environment noises.

As a step towards better understanding of such noises, we categorize of information
in the wild into four types (Section 5.2). This provides a framework to contrast
and understand various methods, highlighting where they may be successful and
where they will suffer (Section 5.2.3). Insights gained this way empirically agrees
with findings from extensive experiments (Section 5.5). It can potentially assist
better algorithm design and analysis of new MDP representation methods, as we have
done in designing Denoised MDP (Section 5.3). We believe that this categorization
will be a useful framework for investigation on learning under noises, revealing not
just the (conceptual) success scenarios, but also the failure scenarios at the same
time. Additionally, the framework can be readily extended with more sophisticated
factorizations (Section 5.2.4), which can lead to corresponding Denoised MDP variants
and /or new algorithms.

Based on the framework, our proposed Denoised MDP novelly can remove all
noise distractors that are uncontrollable or reward-irrelevant, in distinction to prior
works. Empirically, it effectively identifies and removes a diverse set of noise types,
obtaining clean denoised world models (Section 5.5). It may serve as an important step
towards efficient learning of general tasks in the noisy real world. Our experiments also
highlight benefits of cleanly denoised world models on both standard control tasks as
well as non-control tasks. The success in both cases highlights the general usefulness
of such models. Given the generality of MDPs, this opens up the possibility of casting
non-RL tasks as MDPs and automatically learn representations from denoised world

models, as an alternative to manual feature engineering.

128

Part 111

The Platonic Representation

Hypothesis

129

130

Chapter 6

The Platonic Representation

Hypothesis

This section is partially based on published work:
1. The Platonic Representation Hypothesis with co-authors Minyoung Huh, Brian
Cheung, and Phillip Isola at the International Conference on Machine Learning

(ICML) 2024 (Huh et al., 2024).

We argue that representations in Al models, particularly deep networks, are
converging. First, we survey many examples of convergence in the literature: over
time and across multiple domains, the ways by which different neural networks
represent data are becoming more aligned. Next, we demonstrate convergence across
data modalities: as vision models and language models get larger, they measure
distance between datapoints in a more and more alike way. We hypothesize that this
convergence is driving toward a shared statistical model of reality, akin to Plato’s
concept of an ideal reality. We term such a representation the platonic representation
and discuss several possible selective pressures toward it. Finally, we discuss the

implications of these trends, their limitations, and counterexamples to our analysis.

131

6.1 Introduction

AT systems are rapidly evolving into highly multifunctional entities. For example,
whereas in the past we had special-purpose solutions for different language processing
tasks (e.g., sentiment analysis, parsing, dialogue), modern large language models
(LLMs) are competent at all these tasks using a single set of weights (Srivastava
et al., 2022). Unified systems are also being built across data modalities: instead
of using a different architecture for processing images versus text, recent models,
such as GPT4-V (OpenAl, 2023), Gemini (Google, 2023), and LLaVA (Liu et al.,
2023), handle both modalities with a combined architecture. More and more systems
are built off of general-purpose pretrained backbones, sometimes called foundation
models (Bommasani et al., 2021), that support a large range of tasks, including
robotics (Driess et al., 2023; Brohan et al., 2023), bioinformatics (Ma et al., 2024), and
healthcare (Steinberg et al., 2021). In short, Al systems are becoming increasingly

homogeneous in both their architectures and their capabilities.

This chapter explores one aspect of this trend: representational convergence. We
argue that there is a growing similarity in how datapoints are represented in different
neural network models. This similarity spans across different model architectures,

training objectives, and even data modalities.

What has led to this convergence? Will it continue? And ultimately, where does it

end?

Our central hypothesis, stated above in Figure 6-1, is that there is indeed an
endpoint to this convergence and a principle that drives it: different models are all
trying to arrive at a representation of reality, meaning a representation of the joint
distribution over events in the world that generate the data we observe. Figure 6-1
conveys this hypothesis: there exists a real world (labeled Z), which we measure
with various sensors, such as the camera shown to the left (X). Other projections of
these measurements, such as the textual description shown, can be produced from

the first set of measurements or mediated by some other set of measurements, e.g.,

132

The Platonic Representation Hypothesis

Neural networks, trained with different objectives on different data
and modalities, are converging to a shared statistical model of re-
ality in their representation spaces.

Z

a blue cone.

> <{ A red sphere next to

| Feene

!

Figure 6-1: The Platonic Representation Hypothesis: Images (X) and text (V) are
projections of a common underlying reality (Z). We conjecture that representation learning
algorithms will converge on a shared representation of Z, and scaling model size, as well as
data and task diversity, drives this convergence.

touch or other camera views (dotted arrow from X to Y))!. Representation learning
algorithms find vector embeddings that statistically model the various measurements
and projections. The resulting vector embeddings are all derived from the underlying
reality in Z and thereby become aligned. As models are trained on more data and
for more tasks, they require representations that capture more and more information
about Z, and hence alignment toward Z increases toward a convergent point as a
function of scale.

We call this converged hypothetical representation the “platonic representation”

in reference to Plato’s Allegory of the Cave (Plato, c¢. 375 BC), and his idea of an

!Touch could convey the shapes in this example but not the colors. This is an important limitation
to our hypothesis that we discuss at several points in the chapter: different sensors and views might
capture different information, which may limit their potential to converge to identical representations.

133

ideal reality that underlies our sensations. The training data for our algorithms are
shadows on the cave wall, yet, we hypothesize, models are recovering ever better
representations of the actual world outside the cave. This idea is not unique to Plato;
our hypothesis is also related to the notion of “convergent realism” (Newton-Smith,
1981; Putnam, 1982; Doppelt, 2007; Hardin and Rosenberg, 1982) in the philosophy
of science (i.e., that science is converging on truth), and to many arguments that
have been put forth in the representation learning literature (e.g., Tian et al. (2020Db);
Zimmermann et al. (2021); Richens and Everitt (2024); Cao and Yamins (2024)).
Also closely related to our hypothesis is the “Anna Karenina scenario” described
by Bansal et al. (2021), referring to the possibility that all well-performing neural
nets represent the world in the same way. We discuss the evidence they give for
this possibility in Section 6.22. The platonic representation hypothesis refers to the
situation where we are in an Anna Karenina scenario and the “happy representation”
that is converged upon is one that reflects a statistical model of the underlying reality.

We discuss the potential nature of this statistical model in more detail in Section 6.4.

6.2 Representations are converging

Preliminaries We restrict our attention to representations that are vector embed-
dings. We characterize such a representation by the similarity structure it induces,
referred to as its kernel. Kernels are commonly used to assess representations (Korn-
blith et al., 2019; Klabunde et al., 2023); this can be justified by the fact that they
capture the relative structures among data samples, which are also the learning signal
for many machine learning algorithms (Aronszajn, 1950; Smola and Scholkopf, 1998).
Following prior literature, we define representational alignment as a measure of the
similarity of the similarity structures induced by two representations, i.e., a similarity

metric over kernels. We give the mathematical definition of these concepts below:

e A representation is a function f: X — R" that assigns a feature vector to each

2Borrowed from Tolstoy (1877), similar analogies have been made in other domains, such as the
“Anna Karenina principle” popularized by Diamond (1998) to explain animal domestication.

134

input in some data domain X.

e Akernel, K: XxX — R, characterizes how a representation measures distance/sim-
ilarity between datapoints. K(z;,x;) = (f(x;), f(x;)), where (-, -) denotes inner
product, z;,z; € X and K € K.

e A kernel-alignment metric, m: K x K — R, measures the similarity between two
kernels, i.e., how similar is the distance measure induced by one representation to the
distance measure induced by another. Examples include Centered Kernel Distance
(CKA) (Kornblith et al., 2019), SVCCA (Raghu et al., 2017), and nearest-neighbor
metrics (Klabunde et al., 2023).

In our experiments, we use a mutual nearest-neighbor metric that measures the
mean intersection of the k-nearest neighbor sets induced by two kernels, K; and Ko,
normalized by k. This metric is a variant of those proposed in Park et al. (2024),
Klabunde et al. (2023) and Oron et al. (2017). See Appendix E.1 for the exact
definition and Appendix E.2 for comparisons with alternative alignment metrics.

Next, we explore several ways in which representations are converging. First, we
argue that different neural networks are converging to aligned representations. Then,
we show that this continues to hold across modalities, where image embeddings in

vision models align with text embeddings in language models.

6.2.1 Different models, with different architectures and objec-

tives, can have aligned representations

One indication of representational convergence is the rising number of systems built on
top of pre-trained foundation models. These models are becoming standard backbones
across a growing spectrum of tasks. Their versatility across numerous applications
implies a level of universality in the way they represent data.

While this trend implies convergence toward a relatively small set of foundation
models, it does not imply that different foundation models will arrive at the same
representation. Yet that is what has been observed by several recent papers.

Lenc and Vedaldi (2015) conducted one such study, in which they measured

135

Convergence to general competence UMAP of model representations

19
0.40 1 1B:I
A

0.351
0.30 1
0251
0.20 4

0154 Random Initialization
Classification

MAE

Contrastive

CLIP

VTAB tasks solved

IN

Intra-bucket alignment

0101
. 4

*©®

0051 |

o
-
¥l
* 0 % o>

0.00 -
0-20% 20-40% 40-60% 60-80% 80-100%

Percentage of VTAB tasks solved (total=19)

Figure 6-2: VISION models converge as COMPETENCE increases: We measure
alignment among 78 models using mutual nearest-neighbors on Places-365 (Zhou et al.,
2017), and evaluate their performance on downstream tasks from the Visual Task Adaptation
Benchmark (VTAB; Zhai et al. (2019)). LEFT: Models that solve more VTAB tasks tend to
be more aligned with each other. Error bars show standard error. RIGHT: We use UMAP
to embed models into a 2D space, based on distance 2 — log(alignment). More competent
and general models (blue) have more similar representations.

representational similarity through a technique called model stitching. Given two
models, f and g, each composed of multiple layers (f = fio -0 fu, g =g10+-0gm),
an intermediate representation from f is integrated into ¢ via a learned affine stitching
layer h, resulting in a new stitched model F' = f;o0---0 frohogy10---0g¢,. If F
has good performance, it indicates that f and g have compatible representations at

layer k, up to the transform h.

In their study, Lenc and Vedaldi (2015) made two notable findings: (1) A vision
model trained on ImageNet (Russakovsky et al., 2015) can be aligned with a model
trained on Places-365 (Zhou et al., 2017) while maintaining good performance; (2)
The early layers of these convolutional networks are more interchangeable than later
layers. The first finding illustrates a level of data independence where distinct image
datasets lead to similar representations. The second finding agrees with extensive
research that oriented Gabor-like filters are common in both artificial and biological

vision systems. This suggests a convergence to a similar initial layer of representation

136

30 A0 P
o 0 RS
o? O e NN S
< ST ST 7 S
& CE P P LS K&
89 RO N KRR @
010 1] ¥ 014 -
323 S0 g0
s > — 0 e
~ /03 0.09 /' N ol
> 016 e W oo . S
O ? (X J ; -'/i/ % /! tiny
=2 o 0071, ~* base 2 010 < o small
- o larg 0 o ® base
0 o014 0.06 e hug g '/ o large
) 005 0.08
= 01 02 03 04 05 01 02 03 04 05
-
018
e .
G on 020 st o e
. o & 016 [e
- dino small 018 2 v o
. o o~
%70 0 dino base = o1 p o 014 3
=201 . =
= dino large © 014 s base a 012 ;:: base
. . 2 o large] . . ® large
dino giant 0121 o huge O 0104 ¢ o huge
02 0.3 0.4 05 01 02 03 04 05 01 02 03 04 05

0.1
LANGUAGE performance

Figure 6-3: LANGUAGE and VISION models align: We measure alignment using
mutual nearest-neighbor on the Wikipedia caption dataset (WIT) (Srinivasan et al., 2021).
The x-axis is the language model performance measured over 4M tokens from the OpenWeb-
Text dataset (Gokaslan and Cohen, 2019) (see Appendix E.2 for plots with model names).
We measure performance using 1 — bits-per-byte, where bits-per-byte normalizes the
cross-entropy by the total bytes in the input text string. The results show a linear relationship
between language-vision alignment and language modeling score, where a general trend is
that more capable language models align better with more capable vision models. We find
that CLIP models, which are trained with explicit language supervision, exhibit a higher
level of alignment. However, this alignment decreases after being fine-tuned on ImageNet
classification (labeled CLIP (I12K ft)).

across various neural network architectures (Olshausen and Field, 1996; 7). Bansal
et al. (2021) expanded on the idea of model stitching, showing that models trained

using self-supervised objectives align closely with their supervised counterparts.

Moschella et al. (2022) further demonstrated the feasibility of “zero-shot” model
stitching without learning a stitching layer. Despite the fact that different text models
were trained on different modalities, they found that the models often embed data
in remarkably similar ways. In particular, they considered the kernel K defined by
learned representations and showed that K serves as a bridge between models, allowing
an encoder trained in one language, like English, to work effectively with a decoder in

another, like French.

Dravid et al. (2023) extended this idea to individual neurons, and found “Rosetta
Neurons” that are activated by the same pattern across a range of vision models. Such

neurons form a common dictionary independently discovered by all models.

137

6.2.2 Alignment increases with scale and performance

Kornblith et al. (2019) and Roeder et al. (2021) observed model alignment not only
exists but also increases with model scale and dataset size. On CIFAR-10 classification,
Krizhevsky et al. (2009) found that larger models exhibit greater alignment with
each other compared to smaller ones. Theoretically, Balestriecro and Baraniuk (2018)
showed that models with similar outputs (e.g., as a result of having high performance)
also have similar internal activations. With the continuing trend of models scaling up,
this suggests model alignment will increase over time — we might expect that the next

generation of bigger, better models will be even more aligned with each other.

We expand upon this observation by evaluating the transfer performance of 78 vision
models. These models were trained with varying architectures, training objectives,
and datasets (detailed in Appendix E.3.1). In Figure 6-2 (left), we bin these models
based on their average transfer performance on the VTAB dataset (Zhai et al., 2019),
and then measure the average kernel alignment of the models within each bin. The
results indicate that models with high transfer performance form a tightly clustered
set of representations, while models with weak performance have more variable
representations. We further visualize this structure with UMAP (Mclnnes et al., 2018)
over models representation in Figure 6-2 (right). This suggests that models that are
competent all represent data in a similar way. Echoing Bansal et al. (2021) and Tolstoy
(1877), we might say: all strong models are alike, each weak model is weak in its own

way.

The discussion so far indicates that various models are aligning toward a unified
representation. But does the convergence extend to model weights? While models
with different architectures might not have compatible weight spaces, there exists
ample evidence that models with the same architecture will often converge to the same
basin of weights (Nagarajan and Kolter, 2019; Garipov et al., 2018; Lubana et al.,
2023). This holds even for models with different initializations, up to permutations
over weight space (Ainsworth et al., 2022). Because of this, it is possible to merge

separately trained models of the same architecture, and achieve some of the capabilities

138

of all models in the mixture (Stoica et al., 2023; Jordan et al., 2022; Wortsman et al.,
2022).

llama3-70b

=
o}
0.70 mixtra]
e llarma-3 % 08 700
2 065 b‘" llama-65b LO
%] miggral-7
© '* P4
= 0.60 gemma- a ®©
2 .® mﬁ 5 0
T 055 ©/mo-7b enllama-13 n) .ma&Sb
= gemma-2) @penliama-To O e
o
0.50 openllama-3b S 04 istral
8 oimo 168 @ 716 8 [.a—S3b
S 045 o
g bloom-3b c
@ 02 . 5
6 0.40 bloom-17b g gemma-2b a-13b Iy
s s loom-17b bloom-3b enllama-13L@Fma-
& 035 bloom-1.1b k) M A — .)en\\tag;ﬁb
a bloom-560m E 0.0 b 11b bloom-7.1b
030 a7 loom- openllama-3b
0.4 0.6 0.18 0.20 0.22 024 026 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Alignment to VISION (DINOv2) Alignment to VISION (DINOv2)

Figure 6-4: Alignment predicts downstream performance: We visualize correlation
between LLM alignment score to DINOv2 (Oquab et al., 2023) and downstream task
performance on Hellaswag (common-sense) (Zellers et al., 2019) and GSM8K (math) (Cobbe
et al., 2021). LLMs are plotted with radii proportional to the size of the model, and color-
coded by their rank order in language modeling scores (1 — bits-per-byte). We observe
that models aligned more closely with vision also show better performance on downstream
language tasks. For Hellaswag, there is a linear relationship with alignment score, while
GSMS8K exhibits an “emergence”™esque trend.

6.2.3 Representations are converging across modalities

Do models trained on different data modalities also converge? Several works indicate
that the answer is yes.

Merullo et al. (2022) extended model stitching to the cross-modal setting, finding
that a single linear projection is sufficient to stitch a vision model to an LLM and
achieve good performance on visual question answering and image captioning. Koh
et al. (2023) showed that linear stitching can also work in the opposite direction,
aligning text inputs to visual outputs. In fact, many recent language-vision models
stitch pre-trained language and vision models together. For example, LLaVA (Liu
et al., 2023) demonstrated state-of-the-art results by projecting visual features into a
language model with a 2-layer MLP.

Other works show further kinds of evidence of cross-modal synergy. OpenAl (2023)
found that jointly training a language model with a vision model improves performance
on language tasks, compared to training the language model on its own. Sorscher

et al. (2022) show a setting in which word embeddings of visual concept names can

139

be isometrically mapped to image embeddings for those same concepts. In work
concurrent to ours, Maniparambil et al. (2024) show well-trained vision encoders on
large datasets exhibit high semantic similarity with language encoders regardless of
the training paradigm (supervised, self-supervised, or language-supervised). Sharma
et al. (2024) probed the visual knowledge of LLMs trained only on language data, by
converting images into code that an LLM can process. They found that LLMs have
rich knowledge of visual structures, to the extent that decent visual representations
can be trained on images generated solely by querying an LLM to produce code and
rendering the response. In visual generation, LLMs show abilities to augment captions
with visual structures (e.g., bounding boxes) and improve generation quality (Betker
et al., 2023; Lian et al., 2023a,b; Wu et al., 2023). Over other modalities, Ngo and
Kim (2024) showed auditory models are also roughly aligned with LLMs up to a
linear transformation, and Ng et al. (2023) demonstrated the effectiveness of using

pre-trained LLMs for facial motion prediction.

We set out to address these claims in a broader scope to determine whether models
are indeed learning an increasingly modality-agnostic representation of the world. We
sampled a variety of models trained either solely on vision or solely on language, and
compared their representations as they became larger and more competent over many

tasks.

In Figure 6-3, we assess alignment between a suite of language models and vision
models. So far we have only defined alignment for two kernels defined over the same
input space. To measure cross-modal alignment, we use paired datasets to bridge
the two modalities. For vision and text, we use the Wikipedia captions dataset
{(x;,y:)}: (Srinivasan et al., 2021), composed of images from Wikipedia (z;) and their
corresponding captions (y;). We then measure alignment between a language model

ftext and a vision model fi,; as the alignment of the two following kernels:

Kimg(i’j) = <fimg<xi)>fimg($j)> (61)
Ktext(iaj) = <ftext(yi>a ftext(yj)>' (62)

140

Using this analysis, we find that the better an LLM is at language modeling, the more
it tends to aligns with vision models, as shown in Figure 6-3. The converse effect
also holds: the better a vision models is, the more it tends to align with LLMs. See

Appendix E.3.2 for more details.

6.2.4 Models are increasingly aligning to brains

Neural networks also show substantial alignment with biological representations in the
brain (Yamins et al., 2014). This commonality may be due to similarities in the task
and data constraints both systems are confronted with. Even though the mediums
may differ — silicon transistors versus biological neurons — the fundamental problem
faced by brains and machines is the same: efficiently extracting and understanding
the underlying structure in images, text, sounds, etc. (Barlow et al., 1961; Olshausen
and Field, 1997). Sorscher et al. (2022) developed a theoretical framework for how
the efficient extraction of novel concepts occurs for both the human visual system and
deep networks. The tasks that the human visual system has been honed to perform
through evolution — like segmentation, detection, and whole-image classification — are
also the ones that we train our neural nets to perform. Yamins et al. (2014) went as
far as to title their work in the spirit that performance over such tasks implies brain
alignment. Antonello and Huth (2024) posited that it is less the particular task and
more the generality of the representations that explain their alignment with biological
representations. Further, Conwell et al. (2022) showed that training data plays a
large role in alignment. Psychophysical studies have also shown agreement between
how humans perceive visual similarity and how models do, even when the models are
trained on tasks, such as self-supervised prediction, that are seemingly unrelated to

mimicking human perception (Zhang et al., 2018).

6.2.5 Does alignment predict downstream performance?

If models are converging towards a more accurate representation of reality, we expect

that alignment should correspond to improved performance on downstream tasks.

141

- ypqtliégis

% e 2

Hypotﬁgsié -

space 1

__ Scale up

architectures

Hypotﬁe§ls

space 17

épadi; 2

Loss

Figure 6-5: The Capacity Hypothesis: If an optimal representation exists in function
space, larger hypothesis spaces are more likely to cover it. LEFT: Two small models might
not cover the optimum and thus find different solutions (marked by outlined ¥¢). RIGHT:
As the models become larger, they cover the optimum and converge to the same solution
(marked by filled ¥%).

Figure 6-4 supports this hypothesis by demonstrating improved performance on
commonsense reasoning (Hellaswag; Zellers et al. (2019)) and mathematical problem

solving (GSMS8K; Cobbe et al. (2021)) as alignment improves.

6.3 Why are representations converging?

Modern machine learning models are generally trained to minimize the empirical risk

with possible implicit and/or explicit regularization:

trained model

T = . E, gy [£ (.2)] + R

function class

training objective
e
regularization

In the following sections, we lay out how each colored component in this optimization

process potentially plays a role in facilitating representational convergence.

6.3.1 Convergence via Task Generality

Each training datapoint and objective (task) places an additional constraint on the
model. As data and tasks scale, the volume of representations that satisfy these
constraints must proportionately grow smaller, as visualized in Figure 6-6 and stated

below:

142

Hypothesis space

Ay,

task gradient

VY

—v

task gradient /'/

Figure 6-6: The Multitask Scaling Hypothesis: Models trained with an increasing

number of tasks are subjected to pressure to learn a representation that can solve all the
tasks.

The Multitask Scaling Hypothesis

There are fewer representations that are competent for N tasks than there are

for M < N tasks. As we train more general models that solve more tasks at

once, we should expect fewer possible solutions.

This has been previously termed as the Contravariance principle by Cao and
Yamins (2024), which states that the set of solutions to an easy goal is large, while
the set of solutions to a challenging goal is comparatively smaller. Moreover, we argue
that this narrower solution set also generalizes better. As data scales, models that
optimize the empirical risk E__ ... [C(f,2)] also improve on the population risk
E, . reality [£(f,)], and become better at capturing statistical structures of the true

data generating process (reality).

Recent work has demonstrated a power law relationship between data scale and
model performance (Hestness et al., 2017). This implies that with enough data (e.g.,
consisting of the entire internet and all offline scientific measurements) one ought to

converge to a very small solution set with irreducible error — the inherent epistemic

143

uncertainty of the world. As more models are trained on internet-scale data, the set

of solutions that satisfies all data constraints must become relatively small.

In addition to data-scaling, many modern representation learning objectives
L (f,z) directly optimize for multi-task solving. Contrastive learning finds a dis-
tance structure over data samples that optimizes many classification tasks (Chapter 2;
Arora et al. (2019¢); Tian et al. (2020c)). Masked Autoencoders (He et al., 2021)
optimize randomly sampled reconstruction tasks. In fact, autoregressive language
modeling can also be seen as optimizing a diverse set of tasks (Radford et al., 2019).
Such multi-task objectives may be more effective than single-task ones (e.g., ImageNet
classification) due to the fact that they impose more task constraints on the represen-
tation, leading to a smaller and higher-quality solution space (Chen et al., 2020a; He

et al., 2020; Radford et al., 2017, 2019).

6.3.2 Convergence via Model Capacity

Suppose there is a globally optimal representation for standard learning objectives.
Then, under sufficient data, scaling a model (i.e., using larger function classes ' F
), as well as improved optimization , should be more effective at finding better
approximations to this optimum, as illustrated in Figure 6-5. With the same training
objective, larger models, even of different architectures, will thus tend to converge
toward this optimum. When different training objectives share similar minimizers,
larger models are better at finding these minimizers, and will train to similar solutions

over the training tasks. We summarize this hypothesis as follows:

The Capacity Hypothesis

Bigger models are more likely to converge to a shared representation than smaller

models.

144

6.3.3 Convergence via Simplicity Bias

Arriving at the same mapping on the training data does not prohibit the models from
developing distinct internal representations. It is not unreasonable to posit that the
representations used to detect a dog in a 1M parameter model could be quite different
than that used by a 1B parameter model. What would stop a billion-parameter (and
counting) model from learning an overly complicated and distinct representation? One

key factor might be simplicity bias:

The Simplicity Bias Hypothesis

Deep networks are biased toward finding simple fits to the data, and the bigger
the model, the stronger the bias. Therefore, as models get bigger, we should

expect convergence to a smaller solution space.

Such simplicity bias could be coming from explicit regularization R(f) com-
monly used in deep learning (e.g., weight decay and dropout). However, even in
the absence of external influences, deep networks naturally adhere to Occam’s razor,
implicitly favoring simple solutions that fit the data (Solomonoff, 1964; Gunasekar
et al., 2018; Arora et al., 2019a; Valle-Perez et al., 2019; Huh et al., 2023; Dingle
et al., 2018; Goldblum et al., 2023). Figure 6-7 visualizes how simplicity bias can drive

convergence.

6.4 What representation are we converging to?

By now, we hope to have convinced the reader that task and data pressures, combined
with increasing model capacity, can lead to convergence. We next turn our attention
to what exactly is the endpoint of all this convergence.

Our central hypothesis, stated in Figure 6-1, is that the representation we are
converging toward is a statistical model of the underlying reality that generates our
observations. Consistent with the multitask scaling hypothesis, such a representation

would naturally be useful toward many tasks (or at least toward any task grounded in

145

Hypothesis space

simplicity bias

Functions that solve
the tasks

Simple

TGOS <+— <+— <«— simplicity bias

Figure 6-7: The Simplicity Bias Hypothesis: Larger models have larger coverage of all
possible ways to fit the same data. However, the implicit simplicity biases of deep networks
encourage larger models to find the simplest of these solutions.

reality). Additionally, this representation might be relatively simple, assuming that
scientists are correct in suggesting that the fundamental laws of nature are indeed
simple functions (Gell-Mann, 1995), in line with the simplicity bias hypothesis.

But what exactly do we mean by “a statistical model of the underlying reality.”
In this section, we formalize one definition with concrete mathematical statements.
Importantly, this section should be read as just one concrete candidate for the form of

the platonic representation; other candidates could be arrived at from other modeling

assumptions.

6.4.1 An idealized world

We consider a world that works as follows, consistent with the cartoon in Figure 6-1.
The world consists of a sequence of 7' discrete events, denoted as Z = [zy,..., 27,
sampled from some unknown distribution P(Z). Each event can be observed in various
ways. An observation is a bijective, deterministic function obs : Z — - that maps
events to an arbitrary measurement space, such as pixels, sounds, mass, force, torque,

words, etc. Later, in Section 6.6, we discuss limitations and potential extensions to

146

PERCEPTION VISION LANGUAGE

From Human Perception From Pixel From Masked Language From Masked Language

Pointwise Mutual Information Contrastive Learning (SimCSE) Predictive Learning (ROBERTa)

Figure 6-8: Color cooccurrence in VISION and LANGUAGE yields perceptual
organization: Similar representations of color are obtained via, from LEFT to RIGHT,
the perceptual layout from CIELAB color space, cooccurrence in CIFAR-10 images, and
language cooccurrence modeling (Gao et al. (2021); Liu et al. (2019); computed roughly
following Abdou et al. (2021)). Details in Appendix E.4.

continuous and unbounded worlds, and stochastic observations, that could yield a
model that better reflects real learning scenarios.

One can think of an event as corresponding to the state of the world at some point
in time?, but it is also fine to simply consider an event as any variable that indexes
observations, with no further physical meaning?.

In this idealized world, knowing P(Z) would be useful for many kinds of predictions;
this would constitute a world model over the events that cause our observations (Wer-
bos, 1987; Ha and Schmidhuber, 2018; Richens and Everitt, 2024). We will next show

that a particular representation of P(Z) is recovered by certain contrastive learners.

6.4.2 A family of contrastive learners converge to a represen-

tation of P(Z)

Consider a contrastive learner that models observations that cooccur together. For
simplicity, we ground our discussion with the following definition of the cooccurrence

probability, Peor, of two observations z, and x; both occurring within some window

3Here we only analyze temporal sequences, but note that the same could be done with respect to
events laid out in space instead.

4This latter interpretation may be more consistent with Plato’s intent. Scholars have argued that
his allegory of the cave rejects any notion of a true world state (Nettleship, 1897). Instead, we could
say that the joint distribution of observation indices is itself the platonic reality.

147

TwindoW:

Peoor (g,) Z P(X; = x4, Xo = 13).
(') [t=t'| <Twindow
Analogously, we can define P, for Z and other observation modalities. Note that
Proor is symmetric.

Consider positive pairs as two observations nearby in time (sampled from Peoor) and
negative pairs as observations drawn from any point in time (sampled independently
from the marginal). Our contrastive learner tries to classify if a pair is positive or
negative by learning a representation fx: X — R? such that the dot-product kernel
approximates the log odds ratio up to some offset:

P N
(fx(2a), fx () = log PE:ZZ I z Zi

Pcoor(ma | mb) el
Pcoor(xa) + X(ll) (64)

= pr(l"a,l’b) + Cx(l"a), (65)

+ x () (6.3)

= log

where Kppy is the pointwise mutual information (PMI) kernel, and cx (z,) is constant
in x,. We note that this is a common setting for self-supervised contrastive learners
with NCE objectives (Gutmann and Hyvérinen, 2010; Oord et al., 2018), including
SimCLR (Chen et al., 2020a) and SimCSE (Gao et al., 2021). (See Oord et al. (2018)
and Appendix E.6.1 for detailed derivations.)

Under mild conditions that the world is smooth enough (see Appendix E.6.2), a

choice of fx can exactly represent Kpy:

(fx(xa), fx(zp)) = Kpmi(@a, 2p) + cx, (6.6)

where we observed that cx(z,) from Equation (6.5) must be a constant since both

sides are symmetric.

Therefore, the contrastive learners we consider are minimized by a representation fx

whose kernel is Kpy (up to a constant offset). With sufficient data and optimization,

148

we will observe convergence to this point.
Thus we have convergence to a representation of the statistics of X, but what
about Z7 Recall that our idealized world consists of bijective observation functions,

which, over discrete random variables, preserve probabilities. So we have:

Pcoor<xa’ xb) - Pcoor<zaa Zb)

KPMl(xm Qib) = KPMI(Zm Zb)7

where we use P and Kpy in a modality-agnostic way to emphasize that different
modalities share the same these quantities.

All these arguments hold not just for X but also for Y (or any other bijective,
discrete modality), implying:

Kemi(za, 2) = (fx(2a), fx () — cx (6.7)
= (fy (Ya) fr(m)) — cv- (6.8)

Therefore, for any modality in our idealized world, we observe representational conver-
gence to the same kernel, which represents certain pairwise statistics of P(Z).

This analysis suggests that certain representation learning algorithms may boil
down to a simple rule: find an embedding in which similarity equals PMI. We note that
this idea is consistent with prior works that have used PMI as a similarity measure for
clustering in vision and language (e.g., Isola et al. (2014); Isola (2015a); Isola et al.

(2016); Chambers and Jurafsky (2008)).

A study in color We conduct a case study to verify that convergence does happen
on real data. Abdou et al. (2021) discovered that color distances in learned language
representations, when trained to predict cooccurrences in text (Devlin et al., 2018),
closely mirror human perception of these distances, which we reproduce in Figure 6-8
with both contrastive and predictive models. Interestingly, they noted an increasing
similarity as models scale larger and become better at modeling text cooccurrences.

In Figure 6-8, we also learn representations of color based on Kpy from cooccurrences

149

in images. Indeed, learning cooccurrence statistics in either domain recovers roughly
the same perceptual representation. Details of this experiment are described in
Appendix E 4.

We believe that our simple model encapsulates essential aspects of complex real-
world systems, and offers a path toward understanding the representation that models
are converging to—a unified model that is proficient across various domains and
modalities, grounded in the statistical properties of the underlying world. Section 6.6

further elaborates some limitations.

6.5 What are the implications of convergence?

Scaling is sufficient, but not necessarily efficient Our arguments are roughly
in line with the claim that “scale is all you need” to reach high levels of intelligence.
We have argued that as resources are scaled (# parameters, # datapoints, # flops),
representations are converging, regardless of other modeling choices and even data
modality. Does this mean that scale is all that matters? Not quite: different methods
can scale with different levels of efficiency (Hestness et al., 2017; Kaplan et al.,
2020), and successful methods must still satisfy some general requirements (e.g., be a

consistent estimator, model pairwise statistics of P(Z)).

Training data can be shared across modalities Suppose you have access to
N images and M sentences, and want to learn the best representation. If there is
indeed a modality-agnostic platonic representation, then both image and language
data should help find it. The implication is that if you want to train the best vision
model, you should train not just on N images but also on M sentences. This is already
becoming common practice (OpenAl, 2023; Radford et al., 2021). Many vision models
are finetuned from pre-trained LLMs. The other direction is less common, but also
is implied by our hypothesis: if you want to build the best LLM, you should also
train on image data. Indeed, OpenAl (2023) showed that training on images improved

performance on text. In theory, there should be some conversion ratio: a pixel is worth

150

a words for training LLMs, and a word is worth b pixels for training vision models.

Ease of translation and adaptation across modalities When two representa-
tions are aligned, transitioning from one to the other should be a simple function
that’s easily obtained. Our hypothesis could explain the phenomenon that conditional
generation is easier than unconditional (Mirza and Osindero, 2014; Liu et al., 2020;
Sauer et al., 2022), as the data we condition on may have the same platonic struc-
ture as the data we are generating. In line with this, recent work has found that
representation-conditioning is even easier (Li et al., 2023). Similarly, representational
convergence could act as a bridge that lets us find mappings between domains even
without paired data; this may underlie the success of unpaired translation in vision
(Zhu et al., 2017; Shi et al., 2024; Xie et al., 2022) and language (Tran et al., 2017;
Lample et al.; 2018). We emphasize that this doesn’t mean that models trained on
a single modality (e.g., language) can immediately process raw data from another
(e.g., vision). What makes them adaptable to the new modalities is that they share a
common modality-agnostic representation, and can readily process representations of
new modalities. Furthermore, this implies that language models would achieve some
notion of grounding in the visual domain even in the absence of cross-modal data®.

The primary advantage of cross-modal data could then simply be sample efficiency.

Scaling may reduce hallucination and bias A prominent shortcoming of current
LLMs is their propensity to hallucinate, or output false statements. If models are indeed
converging toward an accurate model of reality, and scale powers this convergence,
then we may expect hallucinations to decrease with scale. Of course, our hypothesis is
conditioned on the training data for future models constituting a sufficiently lossless
and diverse set of measurements. This may not come to pass, but it is an implication

of our hypothesis worth pointing out. A similar argument can be made about certain

°In 1688, William Molyneux asked if a person born blind, upon gaining sight, could distinguish
shapes by vision alone (Locke, 1690). Our arguments suggest they could not do so immediately, but
after some visual experience, they could easily map shapes to their prior touch-based representations.
Empirical data supports this, showing that congenitally blind children given sight can quickly learn
these abilities (Held et al., 2011).

151

kinds of bias. It has been shown that large models can exacerbate existing biases
present in their training data (Hall et al.; 2022). Our hypothesis implies that, while
this may be true, we should expect larger models to amplify bias less. This does not
mean bias will be removed, rather that the model’s biases will more accurately reflect

the data’s biases, rather than exacerbating them.

6.6 Counterexamples and limitations

Different modalities may contain different information One immediate ob-
jection to our hypothesis is: what about the information that is unique to a given
modality? Can language really describe the ineffable experience of watching a total
solar eclipse? Or, how could an image convey the a concept like “I believe in the
freedom of speech,” which is easy to write in English? Two different models cannot
converge to the same representation if they have access to fundamentally different
information.

More precisely, our mathematical argument in Section 6.4 only strictly holds for
bijective projections of Z, so that the information in all the projections is equivalent
to the information in the underlying world. This will not hold true for either lossy
or stochastic observation functions. Nonetheless, similar arguments have been made
theoretically and empirically that cooccurrence relations are learned by practical
contrastive (Chapter 2; Zimmermann et al. (2021)) and predictive learners (Papyan
et al., 2020; Roeder et al., 2021). Lu et al. (2021) and Mirchandani et al. (2023) also
showed that models trained to autoregressively generate text also capture statistical
relations in many other modalities, including symbolic reasoning, vision, protein
folding, and robotics.

A more nuanced version of our hypothesis will need to be developed to handle
the case of non-bijective observations and abstract concepts. A starting point could
be: different models will converge to the same representation when the input signals
are sufficiently high information and the models are sufficiently high capacity; when

they are not, the lower-information representation will only align with the higher-

152

0.22 1

-@- ImageNet21K
0.20 1 @~ MAE
c -@- DINOV2
O 07181 -@- cup
2 CLIP (2K 1)
=~ 0161
9
2014+
)
& 0121
c ‘
2 0.10 A
= 0.
0.08 A

0.06 T . ; y
5 words 10 words 20 words 30 words

DCI Caption density

Figure 6-9: Increasing caption density improves alignment: We vary caption length
using the Densely-Captioned-Images (DCI) dataset (Urbanek et al., 2023). Starting from a
dense caption, we used LLaMA3-8B-Instruct (Meta, 2024) to summarize and generate coarse-
grained captions. We compute the average alignment score across all vision and language
models with standard deviation measured over the language models we evaluated. With
denser captions, the mapping may become more bijective, leading to improved language-vision
alignment scores.

information one up to a level capped by the mutual information between the input
signals and by the capacity of each model. This cap might or might not be practically
important. Popular representations like CLIP are explicitly optimized to only capture
the shared information between vision and language, yet are highly successful on many
pure vision tasks. We perform a preliminary test of the effect of information level
in Figure 6-9 (detailed in Appendix E.5), and find that the more descriptive (higher
information) a caption is, the better its LLM representation aligns with the visual

representation of the corresponding image.

Not all representations are presently converging Our argument has mainly
focused on two modalities: vision and language. While we do expect other modalities
will follow similar trends, we have yet to see the same level of convergence across
all domains. For example, in robotics there is not yet a standardized approach to

representing world states in the same way as there is for representing images and text.

153

One limitation lies in the hardware used in robotics, which is often expensive and

slow. This creates a bottleneck in the quantity and diversity of training data.

Sociological bias in producing AI models Researcher bias and collective pref-
erences within the Al community have shaped the trajectory of model development.
There is often an explicit or implicit goal of designing Al systems that mimic human
reasoning and performance, and this could lead to convergence toward human-like
representations even if other kinds of intelligence are in fact possible. Additionally,
the “hardware lottery” (Hooker, 2021) suggests that the success of Al models can also
depend on the compatibility of their design with available computational architectures,

further contributing to convergent trends.

Special-purpose intelligences might not converge Different intelligent systems
can be designed to accomplish different tasks. For instance: A bioinformatics systems
might predict protein structure; an autonomous vehicle might follow lanes on highways.
It’s possible that not much is shared between these two narrow tasks. Our argument
only holds for intelligences that are optimized to perform well on many tasks. We have
argued that a representation of reality is a structure that is useful across many tasks,
but for any special purpose there may be shortcuts, or even effective representations
detached from reality. Such shortcuts may be more efficient and necessary for continued
improvements in specific domains. This will become more relevant if continued scaling

comes up against boundary conditions around resources like energy and compute.

How do we measure alignment? We focused on one particular alignment measure,
mutual nearest-neighbor, in our experiments, and cited experiments using several
others. However, there is active debate on the merits and deficiencies of all these ways
of measuring alignment (Bansal et al., 2021; Sucholutsky et al., 2023). We discuss our

choice and show results for other alignment metrics in Appendix E.1.

Lots left to explain We have shown results where different models arrive at

similar but not the same representations. For example, in Figure 6-3, alignment

154

clearly increases but only reaches a score of 0.16, according to our mutual nearest-
neighbor metric. The maximum theoretical value for this metric is 1. Is a score of
0.16 indicative of strong alignment with the remaining gap being “noise” or does it

signify poor alignment with major differences left to explain? We leave this as an

open question.

155

156

Chapter 7

Epilogue: Towards the Platonic
Representation via Pretraining and

Adaptation

If the Platonic representation is an important missing piece in intelligent agents,
how can we work towards recovering it? To make progress, we need to combine
different sources and modalities, which are different projections about the reality
(Figure 7-1). However, simultaneously training on all projections is both impractical
and infeasible. Handling different projections requires different training paradigms,
and some projections come in the form of interaction (e.g., reinforcement learning
problems) where a pretrained agent need to interact with and adapt to the world.
Furthermore, current best vision language models (VLMs) are obtained via finetuning
a text-only pretrained model (Liu et al., 2023). Therefore, we argue that the most
promising approach would require adapting pretrained models to new concepts and
associations, and adaptation are the biggest challenges towards Platonic representation
for intelligent agents. Towards this goal, we highlight several important questions

focused on pretrained models and adaptation as future directions.

157

has info. of X

learning X statistics <= === Platonic representation

LLM

T T =

vision text control / reasoning
‘ A red sphere next
to a blue cone. {’o

Figure 7-1: Recovering the Platonic representation by combining different sources (projections)
and adapting to new ones. This dissertation explored multiple parts of the arrows (bold
and underlined). Figure is repeated from Figure 1-1.

7.1 Understand what is missing in pretrained models

Pretraining is powerful but is generally limited to specific projections (i.e., datasets
and modalities), and does not capture the full statistical structure of reality. To explore

what is missing, we can probe the information delta between different projections:

Q: If we take a model trained for one projection (i.e., task, modality and/or
objective) and try to extract representation or knowledge for another task

or domain, how can we quantify what is missing?

Towards better understanding, some specific questions we can ask are:
1. Does a vision model understand “I believe in freedom of speech™

2. Does an LLM know decision-making structures (e.g., value function V', invari-

ances, symmetry)?
3. Does a video prediction model capture real world dynamics well enough for

planning?

158

. You . You

In tic-tac-toe, what happens next if player X chooses (2,3)? In tic-tac-toe, what happens next if player X chooses 6?

1 101X 1101X

,25 12,3

GO 101G

© llama3-8b & llama3-8b
@nlolx

@G, 101 @3,3)

Figure 7-2: Current LLMs fail to recognize invariances in game playing. Example shows
LLaMA-3 8B with Tic-Tac-Toe. Similar failures are observed over GPT-4.

— ° ° ° ° . -
o . o o elastic collision
O L]
o long-horizon behavior
>
N [) @ A L
o o g ® ® d o] o @ ® transfer of momentum
bo) [) o L) _
o] . .
= || o o o o ® o o ® conservation of energy
DO %® e e ey o ° oy oo o
o ° . . .
() ° ° .. Qe ® ° ° o @ multi-body interaction
._(;J °e °e °e LIPS col ®, ° ool 0 0y PY
time

Figure 7-3: The BILLIARD-2D synthetic video dataset. We design synthetic video
data where objects evolve following simple physics-like rules in a 2-D plane. Our dataset
generation process is highly configurable, producing videos of various complexities, as shown
above. This flexible and controlled process enables us to analyze different world modeling
approaches on (1) their scaling properties of recovering the underlying “physics laws”, and
(2) the planning capabilities for building general goal-directed agents.

One way to approach these questions is to create synthetic tasks that capture their
essence but also allows full access to control and extract the groundtruth information.
For example, to explore the capability of current video prediction models, we created
a synthetic 2D dataset Figure 7-3 where the full access to data generation allows us
to explore various planning, modeling, and conditioning scenarios. Similarly, we can
use controlled game-playing tasks to understand LLMs’ decision-making capabilities
(Figure 7-2). We expect such methodology to provide novel insights into the limitations

of current pretraining paradigms, as well as how to best improve them.

159

. You

In the pattern below, if X plays next, they already lost b/c 0 can win regardless. Can you use this concept to play better?

Figure 7-4: While the current LLMs do not play games well (Figure 7-2), how can we best
teach them a simple new concept in Tic-Tac-Toe, ideally without much data or supervision,
so that they can use it to improve general decision-making performance (i.e., over many
different yet similar board scenarios)?

7.2 Adapt pretrained models

The information we have access about the reality is dynamic and constantly increasing.
Static models are unlikely to recover the full statistical structure of reality, and to
account for the missing information in models pretrained over limited projections.

The key question is about adaptation:

Q: How can a model efficiently interact with the reality, explore, generate and

verify hypotheses, and internalize them as knowledge in its representations?

The emphasis is on “efficiency”. The most interesting and crucial difference about
the adaptation setting is that we start with a good pretrained model that already
captures the structures of reality to some extent. Proper adaptation should utilize
this existing knowledge so that discovering and internalizing new knowledge is both
efficient and effective. For example, an LLM is trained on Internet-scale data on
various challenging games. If we teach it a new concept for playing Tic-Tac-Toe, the
LLM should not need thousands examples or games to understand it. How can an
LLM quickly pick up a new piece of knowledge and apply it to many different tasks
(Figure 7-4)7

Towards adaptation, some specific questions we can ask are:
1. Can an LLM automatically discover and internalize useful concepts to improve?
2. How do adaptation data and objectives modify model behavior?

3. How to combine different pretrained models?

160

7.3 Intelligent agent = automating science?
true reality

learn from existing knowledge

combine multiple sources the scientific method

interact, explore, verify, internalize

: A red sphere next {’
to a blue cone. o

Figure 7-5: A capable intelligent agent should have a good model of the Platonic representation
that captures the true reality. The process towards recovering this representation shares
similarities with the scientific method in research.

A good model of the Platonic representation that captures the true reality could
be a core component of an intelligent agent. As argued in this chapter, we believe

that the path towards a Platonic representation of reality involves:
1. pretraining on existing knowledge,
2. combining multiple sources of information with adaptation, and

3. interact with the reality to explore, verify, and internalize.

This process to seek the true reality is strikingly similar to the scientific method
for research (Figure 7-5). Both processes perform the search for truth, so it may not
be too surprising that the best approaches coincide. However, the difference is in
how the obtained knowledge is stored. In scientific studies, knowledge about the true
reality is stored in human-understandable forms, such as academic papers, textbooks,
educational videos, etc. In artificial models, we believe that knowledge is stored in the

form of representations.

161

The consistent theme throughout this dissertation is a study on the relationship
between model representations and knowledge of the world. In future, I strive to
continue research towards better machine learning model representations of the reality,
models that also assist scientific research, and ultimately an intelligent agent that

captures the reality in its representations.

162

Appendix A

Proofs, Details, and Additional

Discussions for Chapter 2

A.1 Proofs and Additional Theoretical Analysis

In this section, we present proofs for propositions and theorems in Sections 2.4.1
and 2.4.2.

The propositions in Section 2.4.1 illustrate the deep relations between the Gaussian
kernel G;: 8¢ x 8% — R and the uniform distribution on the unit hypersphere S%. As
we will show below in Appendix A.1.1, these properties directly follow well-known
results on strictly positive definite kernels.

In Appendix A.1.2, we present a proof for Theorem 2.4.7. Theorem 2.4.7 describes
the asymptotic behavior of Leontrastive as the number of negative samples M approaches
infinity. The theorem is strongly related to empirical contrastive learning, given an
error term (deviation from the limit) decaying in O(M ~'/2) and that empirical practices
often use a large number of negatives (e.g., M = 65536 in He et al. (2019)) based on
the observation that using more negatives consistently leads to better representation
quality (Wu et al.; 2018; Tian et al., 2020b; He et al., 2019). Our proof further reveals
connections between Leontrastive ad Luniform Which is defined via the Gaussian kernel.

Finally, also in Appendix A.1.2, we present a weaker result on the setting where

only a single negative is used in Leontrastive (i-€., M = 1).

163

A.1.1 Proofs for Section 2.4.1 and Properties of L iform
To prove Proposition 2.4.2 and 2.4.4, we utilize the strict positive definiteness (Bochner,
1992; Stewart, 1976) of the Gaussian kernel Gy:

A —tllu—v|? wTo—
Gy(u,v) £ e7thuvlz = g2tulo=2t =y

From there, we apply a known result about such kernels, from which the two proposi-

tions directly follow.

Definition A.1.1 (Strict positive definiteness (Bochner, 1992; Stewart, 1976)). A
symmetric and lower semi-continuous kernel K on A x A (where A is infinite and
compact) is called strictly positive definite if for every finite signed Borel measure

supported on A whose energy

Ticlu] 2 / L K aute) duta)

is well defined, we have Ix[u] > 0, where equality holds only if = 0 on the o-algebra
of Borel subsets of A.

Definition A.1.2. Let M(S?) be the set of Borel probability measures on S¢.

We are now in the place to apply the following two well-known results, which
we present by restating Proposition 4.4.1, Theorem 6.2.1 and Corollary 6.2.2 of
Borodachov et al. (2019) in weaker forms. We refer readers to Borodachov et al. (2019)

for their proofs.

Lemma A.1.3 (Strict positive definiteness of G,). For ¢t > 0, the Gaussian

kernel Gy(u, v) £ e~tlu=vlz = ¢2-u™v=2t j5 strictly positive definite on S x S¢.

Lemma A.1.4 (Strictly positive definite kernels on §%). Consider kernel K;: §%x

S4 — (=00, +00] of the form,

Ky(u,v) £ f(llu—wvl3). (A1)

164

If K; is strictly positive definite on 8 x §¢ and Ik, |o4] is finite, then og4 is the
unique measure (on Borel subsets of §?) in the solution of min e v(sq) I, [12], and the
normalized counting measures associated with any K s-energy minimizing sequence of
N-point configurations on S% converges weak* to og.

In particular, this conclusion holds whenever f has the property that —f'(¢) is
strictly completely monotone on (0,4] and If,[o4] is finite.

We now recall Propositions 2.4.2 and 2.4.4.

Proposition 2.4.2. ¢, is the unique solution (on Borel subsets of S%) of

in 1, = i G d d . A2
min ol = min [] Gl ant) du) (12)

Proof of Proposition 2.4.2. This is a direct consequence of Lemmas A.1.3 and A.1.4.
O

Proposition 2.4.4. For each N > 0, the N point minimizer of the average pairwise
potential is

uy = argmin g Gi(ui, uyj).
ul,uz,...,uNESd 1<i<j<N

The normalized counting measures associated with the {u} }%_; sequence converge

weak* to oy.

Proof of Proposition 2.4.4. This is a direct consequence of Lemmas A.1.3 and A.1.4.
O

More Properties of L niform

Range of L, ,iorm- It’s not obvious what the optimal value of Lyniform is. In the
following proposition, we characterize the exact range of the expected Gaussian
potential and how it evolves as dimensionality increases. The situation for Lniform

directly follows as a corollary.

Proposition A.1.5 (Range of the expected pairwise Gaussian potential G,).

For t > 0, the expected pairwise Gaussian potential w.r.t. Borel probability measure

165

1€ M(SY)
T = [[Gulu o) auto) dtu)

has range [e ™ 'y (; dizl; t?), 1], where ,F'; is the confluent hypergeometric limit func-

tion defined as
n

=z
oF1(s 2) éz

(a),n!’

(A.3)

n=0

where we have used the Pochhammer symbol

(), = 1 itn=20
' ala+1)(n+2)...(a+n—-1) ifn>1.

We have

e The minimum e~ (F;(; ££1;¢?) is achieved iff ;1 = o4 (on Borel subsets of S%).

Furthermore, this value strictly decreases as d increases, converging to e~ 2 in

the limit of d — oo.

e The maximum is achieved iff p is a Dirac delta distribution, i.e., p = 9, (on

Borel subsets of 8¢), for some u € S%.
Proof of Proposition A.1.5.

e Minimum.

We know from Proposition 2.4.2 that o4 uniquely achieves the minimum, given

by the following integral ratio

foﬂ e—t(2sin§)? 5 d=1 9 qp
foﬂ sin?~1 9 do

foﬂ e—2t(1—cos0) ¢ind=1 9 49
foﬂ sin?~1 9 do

™ p2tcost gind—1 g qp

_ o—2tJ0
foﬂ sin®' 9 do

Ig,loa] =

The denominator, with some trigonometric identities, can be more straightfor-

166

wardly evaluated as

The numerator is

™ ™
/ e?teostgind=lgdh = — / e?es9 5in?=2 9 cos' O d6
0 0

where we have used the following identity based on the Poisson formula for
Bessel functions and the relationship between £’y and Bessel functions:

1
oF1Gv+1;—=2%).

/1 Lo L VT P +)vm
- 4

162'7:8(1 — %) 2 ds = T‘L’(Z) - I'(v+1)

Putting both together, we have

T . d—
6215 cos 6 smd 1 6do

_ —2tJo
Lo =€ f Tsin?19do
0
r'(¢)yx
ot F(%l#) of1(; %7252)
—=e F(Q
Visidh
_ d+1
=e 27t0F1<7 Tat2>
2t - "
¢ Z (d+1) 1’
n=0 2 /n

where we have used the definition of jF; in Equation (A.3) to expand the

formula.

Notice that each summand strictly decreases as d — co. So must the total sum.

167

For the asymptotic behavior at d — oo, it only remains to show that

lim S~ =1. (A4)

For the purpose of applying the Dominated Convergence Theorem (DCT) (on

the counting measure). We consider the following summable series
(o)
t2n
P
n!

n=0

with each term bounding the corresponding one in Equation (A.4):

th t2n
—_ > =, Vn > 0,d > 0.
n! = (2),n! -
Thus,
e t2n e th
imy — =S "lim - =140+0+---=1.
d—o0 — (%)nrﬂ — d—o0 (%)nn'

Hence, the asymptotic lower range is e=%.

Maximum.

Obviously, Dirac delta distributions 6,, u € S? would achieve a maximum of 1.
We will now show that all Borel probability measures p s.t. I, [p] = 1 are delta

distributions.

Suppose that such a p is not a Dirac delta distribution. Then, we can take
distinct z,y € supp(u) C 8%, and open neighborhoods around = and v, N,,, N, €

S¢ such that they are small enough and disjoint:

1
N, 2 {u € 8% flu—zl, < glle —yl,}

1
Ny £ {ue S |u — y||2 < ng - y”z}-

168

Then,

mwzééfmmwwmw

= [, [) dut)

< (1 - 20(N,) —”—%2/"0/ 0=l () dp(u)

< 1= 20(No)p(Ny) + 20Ny) (N e~ v/
= 1= 2u(No)u(N)(1 — e~9 1)

< 1.

Hence, only Dirac delta distributions attain the maximum.

Corollary A.1.6 (Range of L,niorm)- For encoder f: R™ — 8™ 1 L nitorm (f5t) €

[—2t + log o F'1(; 2;t?),0], where the lower bound —2t + log F;(; 2

s t?) is achieved

y 9)
only by perfectly uniform encoders f, and the upper bound 0 is achieved only by
degenerate encoders that output a fixed feature vector almost surely.

Furthermore, the lower bound strictly decreases as the output dimension m in-

creases, attaining the following asymptotic value

lim —2t + log (F'1(;

m
m—00 2

t?) = —2t. (A.5)

Intuition for the optimal L, ,ifom value in high dimensions. If we ignore the
log oF1(; 2; %) term, informally, the optimal value of —2t roughly says that any pair
of feature vectors on 8¢ has distance about v/2, i.e., are nearly orthogonal to each
other. Indeed, vectors of high dimensions are usually nearly orthogonal, which is also
consistent with the asymptotic result in Equation (A.5).

Figures A-1 and A-2 visualize how (F'; and the optimal Lyniform (given by perfectly

uniform encoders) evolve.

169

n L n n S
200 400 600 800 1000

— FiGa;2)
3 — Lunom(f*,1=2)

Fi(a;5%)
: " Il Lunitorm(f*s1 = 5)
FiGa; 10%) »
B Lunitorm(f*.1 = 10)
't -15}

0 L L L L D @ —20
100 200 300 400 500

Figure A-1: Asymptotic behavior of Figure A-2: Asymptotic behavior of opti-
oF1(a;2). For z > 0, as a grows larger, mal Lyniform(f,t), attained by a perfectly uni-
the function converges to 1. form encoder f*. As the feature dimension

m grows larger, the value converges to —2t.

Lower bound of Lorm estimates. In practice, when L ,iform calculated using
expectation over (a batch of) empirical samples {z;}2,, B > 1, the range in Corol-

lary A.1.6 is indeed valid, since it bounds over all distributions:

B B
A1) I 1 ZZ —t|| f () — f (x5 L
‘Cuniform - log B2 e I ” > —2t+ 10g0F1(7 E,t) (A6)

However, often Lyniform is empirically estimated without considering distances between
a vector and itself (e.g., in Figure 2-6 and in our experiment settings as described in

Appendix A.2):
A (2 — Xi)— :Ej 2
L2 2 1og BT Z Yo el (A7)
=1 je{l,...B}\{i}

While both quantities converge to the correct value in the limit, the lower bound is
not always true for this one, because it is not the expected pairwise Gaussian kernel

based on some distribution. Note the following relation:

B - eXP EEIH)I orm/ 1
‘Cunlform - log ((B _fl) .

We can derive a valid lower bound using Equation (A.6): for (Fy(; 2;¢%) > e—;t,

R B - exp(—2t +log F1(; 2; %)) — 1 Be ' JF1(;2;1%) — 1
(2) p 2o 1727 .) 9
Euniform >10g< B -1 _log B-1 '

170

Since this approaches fails for cases that (F'y(; %'t %) < % we can combine it with

the naive lower bound —4t, and have

2t

max(—4t,log (2o CED)) ip Fy (2082 > o

£(2) > B-1

uniform
—4t otherwise.

Non-negative versions of Lorm for practical uses. By definition, Lyniform
always non-positive. As shown above, different L, niform empirical estimates may admit
different lower bounds. However, in our experience, for reasonably large batch sizes,
adding an offset of 2t often ensures a non-negative loss that is near zero at optimum.
When output dimensionality m is low, it might be useful to add an additional offset of
—log o F1(; %55 t?), which can be computed with the help of the SciPy package function

scipy.special.hypofi1(m/2, txx2) (Virtanen et al., 2020).

A.1.2 Proofs and Additional Results for Section 2.4.2

The following lemma directly follows Theorem 3.3 and Remarks 3.4 (b)(i) of Serfozo
(1982). We refer readers to Serfozo (1982) for its proof.

Lemma A.1.7. Let A be a compact second countable Hausdorff space. Suppose

1. {un}22, is a sequence of finite and positive Borel measures supported on A that
converges weak* to some finite and positive Borel measure p (which is same as

vague convergence since A is compact);

2. {fn}2, is a sequence of Borel measurable functions that converges continuously

to a Borel measurable f;

3. {fu}n are uniformly bounded over A.

Then, we have the following convergence:

im [fo(2) dun(e / f(@) du(e
A

n—oo ze

We now recall Theorem 2.4.7.

171

Theorem 2.4.7 (Asymptotics of Leontrastive). For fixed 7 > 0, as the number of

negative samples M — oo, the (normalized) contrastive loss converges to

lim Econtrastive(f; T, M) - log M
M—oc0

y . | o @) F(w)/ .
T e | @I 4 Y @I |8
{xi_}?ill‘k‘d'pdata
1 _
=— E [f()"fly)]+ E {log E [eﬂx >Tf<$>/TH : (2.2)
T (x,y)~Ppos L~Pdata L™ ~Pdata

We have the following results:
1. The first term is minimized iff f is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

3. For the convergence in Equation (2.2), the absolute deviation from the limit

(i.e., the error term) decays in O(M~%/2).

Proof of Theorem 2.4.7. We first show the convergence stated in Equation (2.2) along
with its speed (result 3), and then the relations between the two limiting terms and

the alignment and uniformity properties (results 1 and 2).

e Proof of the convergence in Equation (2.2) and the O(M~'/?) decay

rate of its error term (result 3).

Note that for any z,y € R" and {z; }M, B Pdata; We have, almost surely,

M
]- T]. —\T N\T
: 1w . L NS e @ | P i@/
o log (Me R Z_l ¢) log E g .
(A.8)

by the strong law of large numbers (SLLN) and the Continuous Mapping The-

orermn.

172

Then, we can derive

lim Lcontrastive(f; T, M) - IOg M

= E [~f(x)" f(y)/7]

(xay)Nppos

1 Ty
; f(x)'f
* A}linoo (=, y)I@’ppos [log (M Z ¢)]

d.
{aj }]W R Pdata

= E [~f(@)"f(y)/7]
. LM 1
L S@T)/ L S f(@)/

A}lz)l})olOg<A{€ YT + Mgle)

-2 B @)+ E [l E_[ererer] |

T (z,y)~Ppos I™~Pdata T7 ~Pdata

where we justify the switching of expectation and limit by the convergence
stated in Equation (A.8), the boundedness of ¢ /™ (where u,v € 8%, 7 > 0),
and the Dominated Convergence Theorem (DCT).

For convergence speed, we have

‘ (]\/lllm Econtrastive(f; T, M) - lOg M) - (Econtrastive(f; T, M) - lOg M)‘
—00

&~ ~Pdata -

M
r _ T 1 T 1 —\T
_ B los E |/ @M] _1op [et @@ 4 LN @) @)
(my)"/ppos [g - 4 g M M;

{-T }7, 1' pdata

< E
(@,y)~Ppos

M iid.
{z i=1 " Pdata

T ~Pdata -

[Fa)T f@)/r] L @i F@)T (@) /7
log E |e | log(Me Y Z)“

- 1
< elT E E [ef(:v)Tf(w)/r] | Let@Trwir .
a (I y)Nppos I~ ~Pdata M Z
{7 1L, paara

SR, B | - i @) f @)/
M w27 Y K g | |8 Pdat i—1

1 2/ -1
ERTANR A9

e ol), (A9)

173

where the first inequality follows the Intermediate Value Theorem and the e!/7
upper bound on the absolute derivative of log between the two points, and the
last equality follows the Berry-Esseen Theorem given the bounded support of
ef @@/ a9 following: for i.i.d. random variables Y; with bounded support

C [—a, a], zero mean and % < a? variance, we have

1 & o R
E||—Y V|| =—F~=E Y;
M; VM | |VMoy ;
o avM 1 M
_ %Y [7p Y, d
M/o [\/MO_Y; >x] x
a(;/ﬁ C
g\j—YM /0 " BINO| >]+ e (Berny-Esseen)
oy CLCa o°
< \/_M(UY +/0 PN (0, 1)] >x]dm)
= (“f“ +E(N <0,1)|])
Y
C a
< = E 0,1
<t N,
:(9<‘]\4—1/2)7

where the constant C, only depends on a (which controls both the second and

the third moment).

Proof of result 1: The first term is minimized iff f is perfectly aligned.

Note that for u,v € S8,

Ju -z =2~-2-u"w.

Then the result follows directly the definition of perfect alignment, and the
existence of perfectly aligned encoders (e.g., an encoder that maps every input

to the same output vector).

Proof of result 2: If perfectly uniform encoders exist, they form the

exact minimizers of the second term.

174

For simplicity, we define the following notation:

Definition A.1.8. Vu € M(S8%), u € 8% we define the continuous and Borel

measurable function

Uu(u) = /Sd e dp(v). (A.10)

with its range bounded in [e7'/7, e!/7].
Then the second term can be equivalently written as

E {log E [ef(a:_)Tf(m)/rH - E [IOgUpdataoffl(f(x))]a

T~Pdata T ~Pdata T~Pdata
where pgaa 0 f71 € M(S?) is the probability measure of features, i.e., the

pushforward measure of py.a via f.

We now consider the following relaxed problem, where the minimization is taken

over M(S8%), all possible Borel probability measures on the hypersphere S%:

i log U, d : A1l
nin | To U dn(w (A1)

Our strategy is to show that the unique minimizer of Equation (A.11) is oy,
from which the result 2 directly follows. The rest of the proof is structured in

three parts.

1. We show that minimizers of Equation (A.11) exist, i.e., the above

infimum is attained for some p € M(S%).

Let {um}_; be a sequence in M(S9) such that the infimum of Equa-
tion (A.11) is reached in the limit:

lim logU,,, (u) dptm(u) = inf / log U, (u) dps(w).
Sd

m—00 [ga pEM(SH)

From the Helly’s Selection Theorem, let ;/* denote some weak* cluster point

of this sequence. Then u,, converges weak® to p* along a subsequence

175

m € N € N. For simplicity and with a slight abuse of notation, we denote

this convergent (sub)sequence of measures by {1} .
We want to show that p* attains the limit (and thus the infimum), i.e.,

/sd log U+ (u) dp*(u) = lim logU,, (u) dp, (). (A.12)

n—o0 Sd

In view of Lemma A.1.7, since S¢ is a compact second countable Hausdorff
space and {logU,, }, is uniformly bounded over S? it remains to prove

that {logU,, }, is continuously convergent to log U,,-.

Consider any convergent sequence of points {z,}°°, € R*! s.t. 2, — =

where z € S¢.

Let 0, = x, — x. By simply expanding U,,, and p,~, we have
eiH&nH/TUﬂn (x) S U/—Ln (In> S e||6n||/TUﬂn (.T)

Since both the upper and the lower bound converge to U,-(x) (by the weak
* convergence of {y,}, to p*), Uy, (z,) must as well. We have proved the

continuous convergence of {logU,,, }» to logU,-.

Therefore, the limit in Equation (A.12) holds. The infimum is thus attained
at p*:

lim [logU,, (u)dp, = /log Uy (u) dp™.

n—oo

. We show that U, is constant ;*-almost surely for any minimizer

p* of Equation (A.11).

Let p* be any solution of Equation (A.11):

p € arg min/log Uy, (u) dp.
HEM(S) Ju

Consider the Borel sets where p* has positive measure: 7 2 {T € B(S?): p*(T) >

0}. For any T € T, let % denote the conditional distribution of u* on T,

176

ie., VA € B(SY),

Note that for any such T' € T, the mixture (1 — a)u* + auh is a valid
probability distribution (i.e., in M(S8%)) for a € (—u*(T),1), an open

interval containing 0.

By the first variation, we must have

0 ot
0= / 10g Ut agpee g (1) d((1 —) p* + o) (1)
O Jsd

a=0

0 "
= %(1 —a) /sd log U(l_a)u“rw}(u) dp(u)

0 "
+ a0 [108U () i)

a=0 a=0

= = /d log U(l*(){)/i*‘FCV,u:} (U) dﬂ* (U)
S

0 :
g o8 U s () ()

a=0

+ /d log U1 -yt aps (u) dpy
S

* Uz *
__ /S 108 U (u) dp* (1) + /8)

0 «
00 5 [108 Uit s (1) i 1)

a=0

* U#*T<u> — Uy (u) N
_ Uu}(u) N)
_/Sd U, (u) dp(u) + /SdlogUm(u)d(uT p)(u) =1, (A.13)

where the Leibniz rule along with the boundedness of U« and U, to-

gether justify the exchanges of integration and differentiation.

Let {T,,}5°, be a sequence of sets in T such that
n=1

i [Uy () i () = sup [U)) 2 U7,
Sd

n—o0 Sd TeT

where the supremum must exist since U, is bounded above.

Because U, is a continuous and Borel measurable function, we have {u: U, (u) >

177

U*} € B(8%) and thus

i (s Uy () > U°}) = 0,
pp, ({u: Ups(u) > U*}) =0, Vn=12,...,

otherwise {u: U,«(u) > U*} € T, contradicting the definition of U* as the

supremuin.

Asymptotically, Uy~ is constant p7, -almost surely:

J.

dp, (u)

Ui (10 = [| Ve) i (1)
= [(0, Gyt [U0 i ()) i,)

<0 — / Ve (w) g, ()

— 0, as n — 0o,

where the inequality follows the boundedness of U,- and that p7, ({w: U, (u) >
U*})=0.

Therefore, given the continuity of log and the boundedness of U,,-, we have

lim log U+ (u) dp, = logU™.

n—oo Sd

Equation (A.13) gives that Yn =1,2,...,

Uy, (u)
1= [[logUye(u)d(u, i)
Sd Sd

Uu*(“)
1 * * *
> i Uiz, (u) dp™(u) —|—/ log U= (u) dpg, —/ log U (u) dpt
sd Sd Sd

1 . . .
- m/ Uy (w) dpe, () +/ log U« (u) dpy, — / log U+ (u) dp,
S Sd Sd

U «
~To and that g ({u: Uy (u) >

m

where the inequality follows the boundedness of

U*}) = 0.

178

Taking the limit of n — oo on both sides, we have

1
1= lim 1> — lim Uy (u) dpey, (w) + lim log Uy« (u) dp, (u)

n—00 * n—oo Sd n—oo Jgd
- / log U,» (u) dp* ()
Sd
=1+loglU" — / log U+ (u) dp*(u)
Sd
>1+logU" — log/ Uy (u) dp* (u)

Sd
>1

-)

where the last inequality holds because the supremum taken over 7 D

{89}

Since 1 = 1, all inequalities must be equalities. In particular,

/ log U, (u) dpe* () zlog/ Uy (u) dp* ().
Sd

Sd

That is, for any solution p* of Equation (A.11), U,~ must be constant

p*-almost surely.

3. We show that o, is the unique minimizer of the relaxed problem

in Equation (A.11).

Let S C M(89) be the set of measures where the above property holds:

S £ {peM(8?: U, is constant y-almost surely} .

179

The problem in Equation (A.11) is thus equivalent to minimizing over S:
arg min/ log U, (u) dp(u) = arg min/ log U,,(u) dpu(u)
HEM(SY) J S HeS 84

= argminlog/ Uy (u) dp(u)
Sd

nes

:argminlog/ / e/ du(v) du(u)
MGS Sd JSsd
1
= arg min (— + log/ / 6_%”“’_”“2 dpJ(U) du(u))
HES T Sd Jsd
:argmin/ / G 1 (u,v) dp(v) dp(u).
pes JsdJsa 7

By Proposition 2.4.2 and 7 > 0, we know that the uniform distribution oy

is the unique solution to

argmln/ G (u,v)dp(v) dp(u). (A.14)
pem(sdy Jsa Jsa

Since o4 € S, it must also be the unique solution to Equation (A.11).

Finally, if perfectly uniform encoders exist, oy is realizable, and they are the ex-

act encoders that realize it. Hence, in such cases, they are the exact minimizers
of
min E {log E [ef(“’_)Tf(m)/TH :

[T~Pdata T ~Ddata

Relation between Theorem 2.4.7, L,z and Lyniform- The first term of Equa-

tion (2.2) is equivalent with L,z when o = 2, up to a constant and a scaling. In

the above proof, we showed that the second term favors uniformity, via the feature

distribution that minimizes the pairwise Gaussian kernel (see Equation (A.14)):

argmln/Sd /S L (u,) dp(v) dp(u), (A.15)

HEM(S4) 2

180

which can be alternatively viewed as the relaxed problem of optimizing for the
uniformity loss Luniform:

1) argminE_ . G2 (7). 1) (A.16)

arg min £ n; ;
gf uniform (fa 27 7 T,y '~ Ddata 27

The relaxation comes from the observation that Equation (A.15) minimizes over all

feature distributions on 8%, while Equation (A.16) only considers the realizable ones.

Relation between Equation (A.11) and minimizing average pairwise Gaus-
sian potential (i.e., minimizing L ifom). In view of the Proposition 2.4.2 and
the proof of Theorem 2.4.7, we know that the uniform distribution o is the unique

minimizer of both of the following problems:

— 1 "/ dp(v) d
oy = min oz [e ape) dutu),

(o} = min, [tog [™7 due) dut)
Sd Sd

HEM(S)

So pushing the log inside the outer integral doesn’t change the solution. However, if
we push the log all the way inside the inner integral, the problem becomes equivalent

with minimizing the norm of the mean, i.e.,

Ev, [U] By [U]
Jin By (U] By [U]

which is minimized for any distribution with mean being the all-zeros vector 0,
e.g., 25 + 15_ for any u € 8¢ (where J, is the Dirac delta distribution at u s.t.
5.(S) = 15(u), VS € B(8%)). Therefore, the location of the log is important.

Theorem A.1.9 (Single negative sample). If perfectly aligned and uniform en-
coders exist, they form the exact minimizers of the contrastive loss Leontrastive(f; T, M)

for fixed 7 > 0 and M = 1.

181

Proof of Theorem A.1.9. Since M = 1, we have

1 _
Leontrastive([;7,1) = E {——f(m)Tf(y) + log (efo@)/T +el >Tf<w>/f)]

(y)~ppos| T
T~ ~Pdata
1 _

> E |- +log (el/f+ef<x)Tf(:v)/r>] (A.17)

Z~Pdata T

T~ ~Pdata

1 T

> —— 4+ min lo (61/T+€u ”/T>d u) du(v A1R
> i [[pl) du(r) (A1)

1
=——+ min / / log (el/T + 6(2_““_“‘@)/(27)) dp(u) dp(v).
T HEM(S?) Jgd Jsgd

By the definition of perfect alignment, the equality in Equation (A.17) is satisfied iff
f is perfectly aligned.
Consider the function f: (0,4] — R, defined as

2

ft) = log(e% + eT:).

It has the following properties:

_t
o —f'(t) = %16 ii = (1 — (1 + e 2)7Y) is strictly completely monotone on
+e 27
(0, +00):
vt € (0, +00),
1 L
Z(l—(l‘f‘@ 27))>0
Cor T L ey (et s =12
— _ —_ e T —= T —
din 27 (27)nt1 ’ T

e f is bounded on (0,4].

In view of Lemma A.1.4, we have that the equality in Equation (A.18) is satisfied iff
the feature distribution induced by f (i.e., the pushforward measure pgaa o f71) is

04, that is, in other words, f is perfectly uniform.

182

Therefore,

1
»Ccontrastive(f; T, 1) > ——+ / / log (61/T + €UTU/T> dad(u) dO’d(U)
T Sd Jsd

= constant independent of f,

where equality is satisfied iff f is perfectly aligned and uniform. This concludes the

proof. O

Difference between conditions of Theorems 2.4.7 and A.1.9. We remark
that the statement in Theorem A.1.9 is weaker than the previous Theorem 2.4.7.
Theorem A.1.9 is conditioned on the existence perfectly aligned and uniform encoders.
It only shows that Leontrastive(f; 7, M = 1) favors alignment under the condition that
perfect uniformity is realizable, and vice versa. In Theorem 2.4.7, L ontrastive deCcOmposes
into two terms, each favoring alignment and uniformity. Therefore, the decomposition

in Theorem 2.4.7 is exempof t from this constraint.

A.2 Experiment Details

All experiments are performed on 1-4 NVIDIA Titan Xp, Titan X PASCAL, Titan
RTX, or 2080 Ti GPUs.

A.2.1 CIFAR-10, STL-10 and NYU-DEPTH-V2 Experiments

For CIFAR-10, STL-10 and NYU-DEPTH-V2 experiments, we use the following

settings, unless otherwise stated in Tables A.3 and A.4 below:

e Standard data augmentation procedures are used for generating positive pairs,
including resizing, cropping, horizontal flipping, color jittering, and random
grayscale conversion. This follows prior empirical work in contrastive represen-
tation learning (Wu et al., 2018; Tian et al., 2020b; Hjelm et al., 2018; Bachman
et al., 2019).

183

e Neural network architectures follow the corresponding experiments on these
datasets in Tian et al. (2020b). For NYU-DEPTH-V2 evaluation, the architecture
of the depth prediction CNN is described in Table A.1.

e We use minibatch stochastic gradient descent (SGD) with 0.9 momentum and

0.0001 weight decay.
e We use linearly scaled learning rate (0.12 per 256 batch size) (Goyal et al., 2017).

— CIFAR-10 and STL-10: Optimization is done over 200 epochs, with
learning rate decayed by a factor of 0.1 at epochs 155, 170, and 185.

— NYU-DEPTH-V2: Optimization is done over 400 epochs, with learning
rate decayed by a factor of 0.1 at epochs 310, 340, and 370.

e Encoders are optimized over the training split. For evaluation, we freeze the
encoder, and train classifiers / depth predictors on the training set samples, and

test on the validation split.

— CIFAR-10 and STL-10: We use standard train-val split. Linear classifiers
are trained with Adam (Kingma and Ba, 2014) over 100 epochs, with
B = 0.5, = 0.999, ¢ = 108, 128 batch size, and an initial learning rate
of 0.001, decayed by a factor of 0.2 at epochs 60 and 80.

— NYU-DEPTH-V2: We use the train-val split on the 1449 labeled images
from Nathan Silberman and Fergus (2012). Depth predictors are trained
with Adam (Kingma and Ba, 2014) over 120 epochs, with 8; = 0.5, 8 =
0.999, € = 1078, 128 batch size, and an initial learning rate of 0.003, decayed
by a factor of 0.2 at epochs 70, 90, 100, and 110.

K
=1

At each SGD iteration, a minibatch of K positive pairs is sampled {(x;, y;)}

and the three losses for this minibatch are calculated as following:

o L ontrastive: For each z;, the sample contrastive loss is taken with the positive being

y;, and the negatives being {y;},-;,. For each y;, the sample loss is computed

184

Input Input Kernel Output Output

Operator Spatial Shape | #Channel | Size Stride | Padding Spatial Shape | #Channel
Input [Rin, Win) Cin — — — [hin, Win) Cin
Conv. Transpose + BN + ReLU [hin, Win] Cin 3 2 1 (2hin, 2win) L¢in/2]
Conv. Transpose + BN + ReLU [2Rin, 2win] L¢in/2] 3 2 1 [4Rin, 4win] Lcin/4]
Conv. Transpose + BN + ReLU | [hout/2, Wout/2] Lcin/Z"’lj 3 2 1 [houts Wout] Lcin/2™]
Conv. [houts Wout] Lcin/2™] 3 1 1 [houts Wout] 1

Table A.1: NYU-DEPTH-V2 CNN depth predictor architecture. Each Conv. Trans-
pose+-BN+ReLU block increases the spatial shape by a factor of 2, where BN denotes
Batch Normalization (Ioffe and Szegedy, 2015). A sequence of such blocks computes a tensor
of the correct spatial shape, from an input containing intermediate activations of a CNN
encoder (which downsamples the input RGB image by a power of 2). A final convolution at
the end computes the single-channel depth prediction.

similarly. The minibatch loss is calculated by aggregating these 2K terms:

i ef(m Fwi)/r . 1 ZK: N el @) f i)/
i—1 .: F@)Tf(y;)/m 2K = & Z]I(:I ef(arj)Tf(yi)/T'

This calculation follows empirical practices and is similar to Oord et al. (2018);

Hénaff et al. (2019), and end-to-end in He et al. (2019).

® Laign: The minibatch alignment loss is straightforwardly computed as
7 ZHf zi) = f(y)lly-

® Luniform: The minibatch uniform loss is calculated by considering each pair of

{z;}; and {y;}::

1 2 el f -2) o L)1 ()2
§log(m26 2 +§10g _1 Ze vi)=f(y; 2

i#] 175]

Tables A.3 and A.4 below describe the full specifications of all 304 STL-10 and
64 NYU-DEPTH-V2 encoders. These experiment results are visualized in Figure 2-5,

showing a clear connection between representation quality and Lajign & Lyniform metrics.

185

IMAGENET-100 Classes

n02869837 | n01749939 | n02488291 | n02107142 | n13037406 | n02091831 | n@4517823 | n@4589890 | n3062245 | n@1773797
n@1735189 | n07831146 | n@7753275 | n@3085013 | n04485082 | n@2105505 | n01983481 | n02788148 | n@3530642 | n04435653
n@2086910 | n02859443 | n13040303 | n@3594734 | n02085620 | N02099849 | n@1558993 | n04493381 | n02109047 | nO4111531
n02877765 | n04429376 | n02009229 | n@1978455 | n@2106550 | n@1820546 | N@1692333 | n@7714571 | n@2974003 | n02114855
n@3785016 | n@3764736 | 03775546 | n02087046 | n07836838 | N04099969 | n04592741 | n@3891251 | N2701002 | Nn@3379051
n02259212 | n@7715103 | n@3947888 | n04026417 | n02326432 | n@3637318 | n01980166 | n@2113799 | n02086240 | N03903868
n02483362 | n04127249 | n02089973 | n@3017168 | n02093428 | n02804414 | n02396427 | n@4418357 | n02172182 | n@1729322
n02113978 | n03787032 | n02089867 | n02119022 | n@3777754 | n@4238763 | n02231487 | n03032252 | n02138441 | n02104029
n@3837869 | n03494278 | n04136333 | n@3794056 | n03492542 | n02018207 | n@4067472 | n@3930630 | N03584829 | n02123045
n04229816 | n02100583 | n03642806 | N04336792 | n@3259280 | n@2116738 | N02108089 | n@3424325 | n@1855672 | n02090622

Table A.2: 100 randomly selected IMAGENET classes forming the IMAGENET-100 subset.
These classes are the same as the ones used by Tian et al. (2020Db).

A.2.2 IMAGENET and IMAGENET-100 with Momentum Con-

trast (MoCo) Variants

MoCo and MoCo v2 with L,z and Lyniform- At each SGD iteration, let

K be the minibatch size,

{f(z:):}, be the batched query features encoded by the current up-to-date
encoder f (i.e., q in Algorithm 1 of He et al. (2019)),

{ fema(vi) }£ | be the batched key features encoded by the exponential moving
average encoder fema (i.e., k in Algorithm 1 of He et al. (2019)),

{queue;}iL; be the feature queue, where N is the queue size.

Laiign and Lyniform for this minibatch are calculated as following:

Lalign: The minibatch alignment loss is computed as disparity between features

from the two encoders:
1K
e > (i) = fema(ws)ll5-
i=1

o Liniform: We experiment with two forms of Lniform:

186

1. Only computing pairwise distance between {f(z;)}; and {queue;};:

K N
1) 2
log (NK 3 e—t\lf(wa—queuej\b) | (A.19)
i=1 j=1

2. Also computing pairwise distance inside { f(z;)}::

2 N avene |
1 —t Z;)—queue;
ot (v DL 2 .

2 —t]|f (i)~ f (25|12
+2NK+K(K—1);€ |

IMAGENET-100 with MoCo

IMAGENET-100 details. We use the same IMAGENET-100 sampled by Tian et al.

(2020b), containing the 100 randomly selected classes listed in Table A.2.

MoCo settings. Our MoCo experiment settings below mostly follow He et al. (2019)
and the unofficial implementation by Tian (2019), because the official implementation

was not released at the time of performing these analyses:

e Standard data augmentation procedures are used for generating positive pairs,
including resizing, cropping, horizontal flipping, color jittering, and random

grayscale conversion, following Tian (2019).
e Encoder architecture is ResNet50 (He et al., 2016).

e We use minibatch stochastic gradient descent (SGD) with 128 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

e Optimization is done over 240 epochs, with learning rate decayed by a factor of

0.1 at epochs 120, 160, and 200.
e We use 0.999 exponential moving average factor, following He et al. (2019).

e For evaluation, we freeze the encoder, and train a linear classifier on the training

set samples, and test on the validation split. Linear classifiers are trained with

187

minibatch SGD over 60 epochs, with 256 batch size, and an initial learning rate

of 10, decayed by a factor of 0.2 at epochs 30, 40, and 50.

Table A.5 below describes the full specifications of all 45 IMAGENET-100 encoders.
These experiment results are visualized in Figure 2-9a, showing a clear connection

between representation quality and Lajign & Luniform metrics.

IMAGENET with MoCo v2

MoCo v2 settings. Our MoCo v2 experiment settings directly follow Chen et al.
(2020b) and the official implementation (Chen et al., 2020c):

e Standard data augmentation procedures are used for generating positive pairs,
including resizing, cropping, horizontal flipping, color jittering, random grayscale

conversion, and random Gaussian blurring, following Chen et al. (2020c).
e Encoder architecture is ResNet50 (He et al., 2016).

e We use minibatch stochastic gradient descent (SGD) with 256 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

e Optimization is done over 200 epochs, with learning rate decayed by a factor of

0.1 at epochs 120 and 160.

e We use 0.999 exponential moving average factor, 65536 queue size, 128 feature

dimensions.

e For evaluation, we freeze the encoder, and train a linear classifier on the training
set samples, and test on the validation split. Linear classifiers are trained with
minibatch SGD over 100 epochs, with 256 batch size, and an initial learning
rate of 30, decayed by a factor of 0.1 at epochs 60 and 80.

Unlike the MoCo experiments on IMAGENET-100, which were based on unofficial
implementations for reasons stated in Sec. A.2.2, the MoCo v2 experiments on full

IMAGENET were based on the official implementation by Chen et al. (2020c). We

188

provide a reference implementation that can fully reproduce the results in Table 2.5
at https://github.com/SsnlL/moco_align_uniform, where we also provide a model

checkpoint (trained using Lajign and Lyniform) of 67.694% validation topl accuracy.

A.2.3 BooKCORPUS with Quick-Thought Vectors Variants

BooOKCORPUS details. Since the original BOOKCORPUS dataset (Zhu et al., 2015)
is not distributed anymore, we use the unofficial code by Kobayashi (2019) to recreate
our copy. Our copy ended up containing 52,799,513 training sentences and 50,000
validation sentences, compared to the original copy used by Quick-Thought Vectors
(Logeswaran and Lee, 2018), which contains 45,786,400 training sentences and 50,000

validation sentences.

Quick-Thought Vectors with L, and Lyniform- ~ With Quick-Thought Vectors,

the positive pairs are the neighboring sentences. At each optimization iteration, let

o {7;}5 be the K consecutive sentences forming this minibatch, where K be the

minibatch size,

e f and g be the two RNN sentence encoders.

The original Quick-Thought Vectors (Logeswaran and Lee, 2018) does not [2-normalize
on encoder outputs during training the encoder. Here we describe the calculation
of Leontrastive, Lalign, and Lyniform for [2-normalized encoders, in our modified Quick-
Thought Vectors method. Note that this does not affect evaluation since features are
[2-normalized before using in downstream tasks, following the original Quick-Thought
Vectors (Logeswaran and Lee, 2018). For a minibatch, these losses are calculated as

following;:

189

https://github.com/SsnL/moco_align_uniform

® L contrastive With temperature:

% ce(softmax({f(z1)"g(z;)},),{0,1,0,...,0})

K-1
1 1 1
+ 7 E ce(softmax({f(z:) g(z;)},),{0,...,0, > 0, 5 ...,0})
i=2 (i —2) s (K—i—1)0s

+ % ce(softmax({f(zx) g(z;)};),{0,...,1,0}),

where ce(p, ¢) is the cross entropy between prediction p and target g.

This is almost identical with the original contrastive loss used by Quick-Thought
Vectors, except that this does not additionally manually masks out the entries

f(x:)Tg(x;) with zeros, which is unnecessary with /2-normalization.

® Laign: The minibatch alignment loss is computed as disparity between features

from the two encoders encoding neighboring sentences (assuming K >= 2):

%I\f(wl)— (@)l + Z 1f(@ia) = g(@i)lls + [1f (z:) = g(wir)ll2)

+ %Hf(xm) ~ ger)ls

o Liniform: We combine the uniformity losses for each of f and g by summing them

(instead of averaging since f and g are two different encoders):

2 o) —)2 2 tllg(s) g2
K(K—l);e +K(K—1);e '

Our experiment settings below mostly follow the official implementation by Lo-

geswaran and Lee (2018):

e Sentence encoder architecture is bi-directional Gated Recurrent Unit (GRU)
(Cho et al., 2014) with inputs from a 620-dimensional word embedding trained

jointly from scratch.
e We use Adam (Kingma and Ba, 2014) with 3; = 0.9, 85 = 0.999, ¢ = 1078, 400

190

batch size, 0.0005 constant learning rate, and 0.5 gradient norm clipping.
e Optimization is done during 1 epoch over the training data.

e For evaluation on a binary classification task, we freeze the encoder, and fit
a logistic classifier with [2 regularization on the encoder outputs. A 10-fold
cross validation is performed to determine the regularization strength among
{1,271, ...,278} following Kiros et al. (2015) and Logeswaran and Lee (2018).

The classifier is finally tested on the validation split.

Table A.6 below describes the full specifications of all 108 BOOKCORPUS encoders
along with 6 settings that lead to training instability (i.e., NaN occurring). These
experiment results are visualized in Figure 2-9b, showing a clear connection between
representation quality and L,jign & Lyniform metrics. For the unnormalized encoders,
the features are normalized before calculated Lajign and Lyniform metrics, since they are

nonetheless still normalized before being used in downstream tasks (Logeswaran and

Lee, 2018).

191

%GTIL | %99 T8 | %BSV'9L | BIL'SL — — — — 8CT G100 (44 00g |pued (c=1"7 (1=0)°7- 921 —
%Y0'9L | %ETT8 | %09°9L | %F0'8L — — — — 8CT G100 (49 00g |pued (e=1"7 (c=0)*7 —
%SREL | BEV'BL | U6EEL | U6EEL — — — — 8¢T | GT0°0 ze | 00z |pued — — (g0=1)7
WUVLOL | %6TLL | %VOTL | %08 TL — — — — 8¢T | G100 ge | 00z |pued — — (L00=2)7
%8869 | %G9TL | %ITOL | %G8 TL — — — — 8¢1T zro 91 00z |pued| (z=1)"7 (1=0)*7 - gzl —
%6869 | %6V SL | BT TL | %E6TL — — — — 8¢1T zro 91 00T |pued| (¢=1"7 (e=0)*7 —
%8E99 | %ESTL | %9E99 | %0ELY — — — — 8TT g1'0 91 00g |pued — — (g0=2)7
%8E'EL | %GT6L | %60FL | %EGEL — — — — 8CT | GL000 91 00g |pued (c=1"7 (c=v)*7-gt1 —
%OLTL | %FS'LL | %00°EL | %SLTL — — — — 8T | SL00°0 91 00Z |pued (e=1"7 (1=0)*7 - gzl —
%89'EL | %90'6L | BFETL | %S9 TL — — — — 8¢T | SL00°0 91 00T |pued| (z=1"7 (c=0)*7 —
%8E']Y | BETIL | %VO0L | %6S69 — — — — 8CT | GL00°0 9T | 00z |pued — — (¢0=1)7
%EI69 | BISGL | %VSOL | %9V 0L — — — — 82T | GL00°0 9T | 00 |pued — — (L00=1)7
%90°SS | %98°C9 | %68'TE | %96'€S — — — — 8CT | GL8TI000 | ¥ 00T |pued (c=1"7 (c=v)*7-gt1 —
%EILY | %689S | %68'TY | %LE'EY — — — — 8CT |9290¥1000| € 00g |pued (c=1"7 (c=v)*7-gt1 —
%0E'CE | %8GLY | %95TT | %IE6T — — — — 8CT | GLE60000 | T 00g |pued (e=1"7 (t=v)*7 - g1 —
NN-G + | Teoury + | NN-§ + | Tedul'T + | NN-G + | Teour] + | NN-§ + |Iedur] + wiojun.~ usle aNIsEAUOdS
10% 29% mding | mdino L% L% mdig | mdinQ | wi| g rewyg | %S |syoodsy | atug
J Aoeanooy 1eg uoryepiep J Aoramooy ‘TeA ssox)) plog-¢ 10§ Sururedy, e $98S0]

"RG-7, 9INSI] Ul UMOUS PUDI} dUIRS 9} MO[[O]

SoLIjour WHoHUN~ 29 UBlE~ prre £ovImooe IO], "9R), JO OZIS D] [BNSNUN IIOY)} 0} oNp “BG-g oInJI ut pejjord s1opoous ¢gg o) jo jred jou ore
N ‘SUTUNIOUY SZI[RIJTUL 0] POSTL dIR R} SIOPOOUD MOYS SMOI 91} JSB[O, "UOISUSWIP SSO[oUO JO oI0ydsiodAy jrun oY) uo oAl Loy} 01
‘saanyea] IndIno a1} JO UOISUSWIP JUSIQUIR B[} SMOYS (, TI(],, S8 pajeIsdIqqe) AYeuolsuswl(] *(97Is UoIeq 9Gg 12d g]°() SUI[RIS IRaUI] ® BIA
poInduwod 10 () St PoXY Ioyjio AJ[ensn ore (sY) sojel SUIULIRY[[RINU] JOQUIAS SUIRS 9} [IIM POYIRW MOI JUoWLIDdXo oY) ®IA PauTre}(o
‘Topoous poureljdld e WOl SUIUNIOUY 9JOUSP S[OQUIAS PUR ‘UOIIRZI[RIJTUL YIOMISU PIRPURIS 0) SIOJOI Ppued, ‘UOIJRZI[RIJIUI I9POOUS IO
*}9S UOIJRPI[eA JNO P[OY oY) PuR 10S FUIUIRI} 9} JO

UOTJRPI[RA SSOID P[OJ-G B [JOQ ®BIA ‘SUOIJRAIIOR)] I0 SHNAIN0 I9POOUS IOJIO U0 SIOYISSR[D G = ¥ UM (NN-¥) I0qUSIou)soIesli-y pue Ieaul]
J0 Aoeanooe Aq painseswr Ajenb uorjejusseidor opoous oY} 1odar oAy SIOPodud OT-T1.I,S F0E [[® 10} suoneoymnads juswitiodxy ¢y 9[qR],

192

%09°9L | %ITHS | %ET'6L | %6L 18 9¢g c1o 96z | 00T |pued (c=1"7 (e=0)*7-50 —
%80VL | %GGE8 | %6V'8L | %6T 18 8C1T 210 96z | 00z |pued (c=»"7 (1=0)*7- 921 —
%09°9L | %VT V8 | %LI8L | %9L08 8CT z10 99z | 00z |pued (c=1"7 (c=0)*7 —
%I89L | %VSE8 | %AS8L | %VS 08 8TT T10 96z | 007 |pued (c=1"7 (c=0)°7-6L0 —
%9€°GL | %60°I8 | %9STL | %I9°GL 8CT 4N 98z | 00z |pued — — (90=1)7
%TGGL | %6V I8 | %BISGL | %60°9L STT z10 9¢Z | 00T |pued — — (g0=1)7
%9S°€L | %908 | %9IVGL | %ETGL 8z1 210 9GZ | 00z |pued — — (L0'0=1)7
%ST 9L | %IV'ES | %9T8L | %OV'8L 79 z10 96z | 00z |pued (c=1"7 (e=0)*7-6L0 —
%I6'GL | %GL'T | %I6'LL | %6108 8TT z10 8¢T | 00z |pued (c=1"7 (1=0)*7- 921 —
%ETCL | %0LT8 | %USLLL | %FL6L 8TT T1o0 8¢T | 007 |pued (e=n"7 (c=v)*7 —
%OTVL | %I86L | %VI'EL | %ETTL 8CT 4N 8ZT | 00T |pued — — (L89°0=1)°7
%8SVL | %VL 08 | %08FL | %S9 GL 8z1 z10 8¢I | 007 |pued — — (g0=1)7
BITTL | %V78L | %¥8EL | %IT'EL 821 210 8Z1 | 00z |pued — — (L0'0=1)7
%96°9L | %6EE] | %60'8L | %SGS 6L 8CT 90°0 8¢1 | 00z |pued (c=1"7 (c=p)*7 —
%9€°CL | %8608 | %88 TL | %95 GL 8TT 900 8¢T | 00z |pued — — (c0=1)7
%8GTL | %06°6L | %EL %FTEL STT 900 8¢T | 00z |pued — — (L0'0=2)>7
%STLL | %ST'E8 | %08 LL | %1808 ¥20T €00 $9 00z |pued (e=1"7 (c=v)*7 —
YBIT'LL | %88'C8 | %6V'8L | %8V'18 7301 €0°0 79 00z |pued (c=1"7 (e=0)*7-50 —
%6TLL | %VO'E’ | %GO8L | %IV 08 45 €00 79 00z |pued (c=n"7 (c=0)°7 —
%0€°GL | %OV'I8 | %61°9L | %99°8L 8CT z10 79 00z |pued (c=1"7 (1=0)*7-q2'1 —
%67 GL | %ST'TI8 | %GL'GL | %08 LL 8TT g10 79 00z |pued (e=1"7 (c=0)*7 —
%ES9L | %V8T8 | %V8LL | %ST 6L 8TT €00 79 00z |pued (c=n"7 (c=v)*7 —
%TSGL | %V908 | %SYTL | %65 TL 8CT €00 79 00z |pued — — (G0=1)7
%SG EL | %BV'8L | %G6'CL | %EYGL 8TT c1o 49 00z |pued (e=1"7 (1=0)*7-92°1 —
BITEL | %9G'8L | %0L'EL | %OV'SL 8c1T z10 49 00z |pued (c=»"7 (e=0)*7 —
%6969 | %S6'TL | %9969 | %EV 0L 8zT z10 49 00% |pued — — (c0=1)7

193

%88'89 | WFT'GL | %ET'TL | %VT'89 | %6T'89 | %VIVL | %ST0L | %8829 | 8CI 9€°0 89L | 00T |pued — (5000=1)>7
%6S 9L | BISE] | %ETBL | %V6'LL — — — — 79 9¢°0 89L | 00T |pued (z=0)7 —
%E99L | %00FS | %SE8L | %EE LL — — — — 79 9€°0 89L | 00z |pued (t=0)°7 - 6L0 —
%98'GL | BE6T8 | YOV LL | BILEL — — — — (43 9€°0 89L | 00T |pued (gz=0)"7 —
%6T'GL | BIVT8 | %E6'9L | %G9EL — — — — (43 9¢°0 89L | 00T |pued (e=0)*7 —
%BITTL | %EI6L | %0SEL | %0E 0L — — — — e 9€°0 89L | 00T |pued (e=0)"7-¢0 —
%TS VL | %6STI8 | %66TL | %SGTOL — — — — 91 9¢°0 89L | 00T |pued (z=0)*7 —
%SG 0L | BST'LL | %IVOL | %IV'S9 — — — — 91 9¢°0 89L | 00T |pued (z=0)"7-20 —
%9IOTVL | BES08 | YVSEL | %E6'TL — — — — 91 9€°0 89L | 00T |pued — (g0=1)7
%SE69 | %99CL | %EL'8Y | %0TFI — — — — 91 9€°0 89L. | 00T |pued — (L00=1)7
%99 | %00'0L | %69 TS | %6T'LY — — — — i4 9¢°0 89L | 00T |pued (z=0)"7-%0 —
%68'LI | UEG'EL | BIF'SS | %6EES — — — — iZ 9¢°0 89L | 00T |pued — (g0=1)7
%OT'8S | %SETVY | %8OLY | %V6'9F — — — — iZ 9€°0 89L | 00T |pued — (L00=2)7
%8L'8SG | %8SLI | %SVIV | %0V I — — — — € 9€°0 89L | 00z |pued (c=0)°7 —
%V0'9S | %F9S9 | %EI6E | %OT' I — — — — € 9€°0 89L | 00z |pued (z=0)"7-¢0 —
%TR6S | USE'RY | %0L'6E | %6TTY — — — — € 9€°0 89 | 00T |pued — (g0=+)7
%YI9S | BITEY | %99°6E | %69 6E — — — — g 9¢°0 89L | 00T |pued — (L00=1)7
%SY'BE | U6EGY | UV6'ET | %S06C — — — — (e 9€°0 89L | 00z |pued (z=0)*7 —
%OT'EY | %6T 6V | %V09T | %S8LT — — — — (e 9¢°0 89L | 00T |pued (z=0)*7- <0 —
%6V'TY | BII8Y | %6EST | %99°0€ — — — — (é 9€°0 89L | 00T |pued — (G0=1)7
%ER'TE | %96'65 | %0S'ST | %IV6CT — — — — 4 9€°0 89L | 00T |pued — (L00=2)7
%FLGL | %90F8 | %VS'8L | %VeT8 — — — — |960%| ¥T0 TIS | 00T |pued (z=0)"7-¢0 —
%89°9L | %IVE’ | %968L | %6VC8 — — — — |c6I8| GL89T'0 | 09¢ | 00 |pued (z=0)"7-%0 —
%88IL | BIYES | %9L'8L | %EETR — — — — 4xe 2o 96z | 00T |pued (z=0)*7 —
BIT'LL | %69°€8 | %VL'8L | %S6°08 — — — — 9¢T g0 96z | 00T |pued (z=0)*7 —
%6L9L | %98'ES | %T96L | %8T'I8 — — — — 99¢ zro 96¢ | 00T |pued (t=0)°7 - 4L0 —

194

%SG TL | %IT08 | UV6'TL | UVSEL | %EL'EL | %TY6L | %V8TL | %IEEL | 8TT 9€°0 89L | 00T |pued — (z=0)*7 (g0=2)7
WBIECL | BI608 | %8BT TL | U0STL | BLLTL | %ES08 | %OT¥L | %697L | 8CI 9€°0 89L | 00T |pued — (z=0)*7- <0 (¢0=1)7
YET'CL | %EI 08 | %E6EL | %I6TL | %SG TL | BIT08 | %T6'€L | %9I8TL | 8CI 9€°0 89L | 00T |pued — (z=0)"7-20 (g0=+)7
%EECL | UELE] | UTV'8L | UVO'8L | %ISTL | %8TE’ | %TO8L | %9LLL | 8TI 9€°0 89L | 00T |pued — (z=0)"7-¢0 (To=+)7
%EETL | %OT'T8 | %IT 9L | %6GGL | %SSEL | TGI8 | %6SGL | %ET'GL | 8T 9¢€°0 89L. | 00T |pued — (z=0)"7-¢0 (L00=2)7
%RVE'CY | USLOL | %ESCS | %GLCS | %STGY | %6T 0L | %FLGS | %9¢°CS | 8TI 9¢°0 89L | 00T |pued — — (=107

%E6'0L | WBTE9L | %0EC9 | %EEGI | %6S0L | %08'GL | %0EG9 | %IT99 | 8T 9€°0 89L | 00T |pued — — (=17
WIRTL | UBSELL | %LL99 | UET'LY | %GOTL | %VOLL | %STL9 | %6L°L9 | 8TT 9¢°0 89L | 00T |pued — — (e=+)7

BIOVL | UVS6L | %IETL | %00'EL | %8OFL | %IT6L | %P1TL | %88CL | 8TI 9¢°0 89L | 00T |pued — — (1=+)7

%IO'GL | %ST08 | %TSEL | %EITL | %LTTL | %TL6L | BIVEL | %6STL | 8CI 9¢°0 89L. | 00T |pued — — (eL0=+)7
BILGL | I8 | %TI9CL | %99°9L | %0E'SL | %8T'I8 | %0€'GL | %LS9L | 8TI 9¢°0 89L | 00T |pued — — (g0=1)7
WVL'GL | %V8T8 | %STLL | %86'8L | %IT'SL | %8ST8 | %I0LL | %6L8L | 8CI 9¢°0 89L | 00T |pued — — (€0=1)7
BIEIL | BOT'ES | UbT LL | U0S'6L | %EE'GL | %0LT8 | %FELL | %LT'6L | 8TI 9€°0 89L | 00T |pued — — (cz0=2)7
%86'GL | UELES | UI6LL | UB6'6L | %LOGL | %LEES | %08 LL | %F96L | 8TI 9¢°0 89L | 00T |pued — — (z0=1)7
%EEIL | U68E] | UGL8L | %908 | U6EGL | %TSE’ | %0€8L | %FI08 | 8TI 9¢°0 89L | 00T |pued — — (61°0=1)°7
%BIRGL | %96°E8 | U6V 8L | %6T 08 | %O8TFL | %9S€8 | %0T8L | %¥L6L | 8TI 9¢°0 89 | 00T |pued — — (aLT0=2)7
%90°GL | %SYER | %BIBL | %V008 | %TVTL | %SEE] | %8E8L | %VS6L | STI 9¢°0 89L | 00T |pued — — (oT0=2)7
%0T'GL | %ET T8 | %66'8L | %IT'08 | %VITL | %TIER | %LV'8L | %IS6L | 8TI 9¢°0 89L | 00T |pued — — (cT0=1)7
%86°CL | %ST T8 | %098L | %0S6L | %IT'GL |%B6°E8 | %CS8L | %9V6L | 8TI 9¢°0 89L | 00T |pued — — (eT0=1)7
%SSGL | %60F8 | UGI8L | UBS 6L | %ESTL | %0EE8 | %90°8L | %S0°6L | 8TI 9¢°0 89L | 00T |pued — — (Ge10=2)7
%09°GL | %ELE] | UELBL | UTO'6L | %66TFL | %6TE8 | %0T8L | %S¥'8L | 8TI 9¢°0 89L | 00T |pued — — (Tr0=+)7
%6T'CL | %68 | UISLL | %ESLL | UBTTL | %€6T8 | %OV LL | %SSLL | 8TI 9¢°0 89L | 00T |pued — — (To=+)7
WISVL | %ETE8 | %IV LL | UVL'LL | %96'EL | %TST8 | %STLL | %ST'LL | 8TI 9¢°0 89L | 00T |pued — — (600=+)>7
%EVTL | BIST8 | %6L 9L | %8IIL | %S6'EL | %TLTI8 | %90°9L | %TT'9L | 8TI 9€°0 89L | 00T |pued — — (800=1)°7
%E6'EL | UYET8 | UBI'GL | %IV'GL | %OTEL | %E6°08 | %IT'GL | %T0GL | 8T 9¢°0 89L | 00T |pued — — (L00=2)>7
%S969 | BETIL | %8E'0L | %9869 | %66'89 | %8IGL | %TI0L | %E969 | 8TI 9¢°0 89L | 00T |pued — — (100=+)>7

195

%80°9L | %6LES | %BG6°LL | BTL6L | %6T'SL | %V8TS | %99°LL | %ES6L | 8TI 9€°0 89L | 00z |pued| (¢=1"7-¥0 | (c=0)*7-¢0 | (G0=1)>7 <0
%09°GL | %6TES | %G6LL | %0T6L | %LSTL | %S6'TS | %EVLL | %G8'8L | SCI 9¢€°0 89L | 00z |pued| (c=1"7-¥0 | (@=0)*7-¢0 | (10=2)>7 -0
%IETL | BEOT8 | UEVIL | %OTLL | %6SEL | BSVI8 | WVL'GL | %6S9L | 8CI 9€°0 89 | 00z |pued| (G=9"7-¥0 | (@=v)7-¢0 |L00=1)0T-¢0
%6T'9L | %S9T8 | %ST'LL | %098L | %09°GL | %TOT8 | %67'9L | %Ge'8L | 8CI 9¢€°0 89 | 00z |pued| (c=9"7-¢0 | (@=0)°7-v0 | (§0=4)7-¢0
%VYGL | BVL'ES | %0E8L | %ERBL | %ITGL | %6E'ES | %T08L | %0V'8L | 8CT 9€°0 89 | 00z |pued| (c=9"7-¢0 | (@=0)°7-70 | (10=+)°7-50
UVVVL | %9ETS | USLOL | %IVOL | %8IEL | USLT8 | %TT 9L | %CT9L | 8T 9¢°0 89L | 00z |[pued| (z=1)"7-20 | (2=0)*7-%0 |(L00=2)>T7-S0
UPT'GL | %EI08 | %8TEL | %S0OTL | %VSTL | %8008 | %TI€L | %98°€L | 8TI 9€°0 89L | 00T |pued — (c=0)7-c0 | (€0=12)7-¢0
WBITIL | %E6'ES | %IT8L | %90'8L | %LT'GL | %6EE8 | %OLLL | %0LLL | 8TI 9€°0 89L | 00T |pued — (c=0)7-c0 | (10=12)°7-¢0
%EITVL | B00T8 | U6T9L | %YL GL | %I6'EL | BES T8 | %ESGL | %OV'SL | 8CI 9€°0 89L | 00z |pued — (e=0)*7-¢0 | (L00=2)7 50
BITCL | %EIT8 | %E8IL | %60'8L | %IFFL | %6608 | %ST9L | %6V LL | 8TI 9€°0 89L | 00T |pued| (=1)"7-7T — (g0=+)7
%8V'9L | BITFS | %SO6L | %90 I8 | %9S'GL | %TL'ES | %L88L |%¥808 | 8CI 9¢€°0 89L. | 00T |pued (e=1"7 — (g0=2)7
%BY09L | BYEES | WVI8L | %008 | %CT'GL | %T6T8 | %ST8L | %E6'6L | 8TI 9€°0 89L | 00T |pued| (z=0)"F — (g0=1)7
WIL'GL | %SLES | UST'8L | %EO'6L | %LOTL | %ITER | %¥6LL | %SS8L | 8CTI 9€°0 89L | 00T |pued| (=17 — (T0=+)7
%EYEL | UELTY | ULEIL | UYL | UBLTL | %6S T8 | %8L'GL | %TE9L | 8TI 9€°0 89L | 00% |pued| (z=1"7 — (L00=2)>7
UYV'GL | BIL'ER | YILBL | %EVO8 | %ITTL | BSEE] | %TE8L | %ST 08 | 8TI 9€°0 89 | 00z |pued| (G=9"7-80 | (G=0)°7 10 (g0=2)7
%6T'GL | %IL'ES | %SV'SL | %8I8L | %EITL | %ST'ES | %T0O'8L | %6S'8L | STI 9¢€°0 89 | 00z |pued| (c=9"7-80 | (E=0)°7 10 (ro=+07
%Y TL | BIVTS | BIT9L | %06°9L | %60°E€L | %ST'TI8 | %T9GL | %6T°9L | 8CT 9¢€°0 89 | 00z |pued| (c=9"7-80 | (E=0)°7 10 (L00=1)>7
%99°CL | %8TES | BYT8L | %V0'08 | %TEGL | %EOES | UV6'LL | %TL6L | STI 9¢€'0 89L | 00z |pued| (c=1"7-90 | (€=9)°7 €0 (G0=+)7
%ELTL | %OT'ES | %FS'8L | %¥88L | %IETL | %L8TS | %G8 LL | %8E8L | SCI 9¢€°0 89L | 00z |pued| (¢=1)"7-90 | (z=0)°7-20 (ro=+°7
IV'EL | BIST8 | %09CL | %S09L | %0STL | BV6'08 | %TCGL | %ILGL | 8CI 9€°0 89 | 00z |pued| (G=9"7-90 | (G=v)°7-%0 (L00=2)7
%IV'GL | BE6T8 | UBE'LL | %EO6L | %TT'SL | %LST8 | %669L | %69'8L | 8TI 9€°0 89 | 00z |pued| (G=9"7-¥0 | (G=0)°7 €0 (g0=2)7
%66TL | BIGES | U6LLL | %8E8L | %TTTL | %LLTS | %ST'LL | %86°LL | 8TT 9¢€°0 89 | 00z |pued| (c=9"7-¥0 | (G=0)°7 €0 (ro=+07
BITTL | %S6'T8 | %00°9L | %ET9L | %ST'EL | %ST'I8 | %GSGL | %€6'GL | 8CT 9¢€°0 89 | 00z |pued| (c=9"7-¥0 | (G=0)°7 €0 (L00=1)>7
WSV'GL | %8ETS | %09°9L | %86'LL | %OT'SL | %96°T8 | %ETIL | %ELLL | 8TT 9¢€°0 89L | 00z |pued| (¢=1)"7-20 | (2=0)°7 %0 (g0=+)7
%EY'CL | %9TES | %OT'SL | %¥98L | %VSTL | %VO'ES | BI9LL | %LT'8L | SCI 9€°0 89L | 00z |pued| (¢=1"T7-20 | (2=0)°7 %0 (ro=+°7
%00VL | %80T8 | %SVIL | BIT'IL | %8V'EL | %OS I8 | %86'GL | %LLGL | 8CI 9€°0 89. | 00z |pued| (G=9"7-20 | (G=0)°7 %0 (L00=2)7

196

%ET'GL | %OL08 | %OTTL | %ELTL | %CLTL | %0€08 | %EOTVL | %6V TL | SCI 9€°0 89L | 00z |pued| (z=1)"7-91°0 | (c=0)°7-¥8°0 —
%68°GL | %OBTI8 | %9L9L | %EELL | %9TCL | %STI8 | %VE9L | %EOLL | SCI 9€°0 89 | 00z |pued| (G=9"7-910 | (G=0)°T -850 —
%EVCL | BWIV08 | U6ETL | %66TL | %E6TL | %OT08 | %90TVL | %99 VL | 8CI 9€°0 89L | 00T |pued| (z=2)"7-GC10 | (€=0)°7 <80 —
%I6TT | BITOT | %EL6 | %000T | %IT'ET | %OT'OT | %6L6 | %000T | STI 9€°0 89L | 00T |pued| (z=1)"7-S¢1°0 | (€=0)°7 <C60 —
%ITET | %000T | %SO°0T | %00°0T | %L6TT | %000T | %LTOT | %000T | 8TI 9¢°0 89L. | 00% |pued| (z=2)"7-<T0 | (c=v)°7 <80 —
%0 ET | BOLTT | %S€6 | %0001 | %ITFT | %0EOT | %L90T | %000T | 8CT 9¢°0 89L | 00T |pued| (¢=9)"7-r10| (2=0)°7 980 —
%80°ST | %ELOT | %T66 | %000T | %V ¥l | %EEOT | %206 | %000T | 8T 9€°0 89L | 00z |pued| (z=1)"7-¥10 | (c=0)°7-98°0 —
%OL'GL | %69 T8 | %9I8CGL | %SEIL | %LTCL | BLOT8 | %ISGL | %SE9L | 8T 9€°0 89 | 00z |pued| (G=9"7-¥10 | (G=0)°T 250 —
%ITTT | %SO0T | %VT'6 | %000T | %IL'ET | %TV Ol | %TS0T | %0001 | SZI 9€°0 89L | 00T |pued| (z=2)"7-Gel0 | (€=0)°T CLE6O —
%EV'TT | %EOOT | %8T'IT | %00°0T | %68°CT | %00°0T | %ET0T | %00°0T | 8TT 9€°0 89L | 00% |pued| (z=2)"7-210 | (c=v)°7-88°0 —
%99°GL | %OV I8 | BIF'GL | %66'GL | %LSTL | %8808 | %OT'SL | %E6'SL | 83T 9¢€°0 89. | 00z |pued| (c=1"7-cr0 | (6=0)°7 950 —
%EOFT | %000T | %9T'0T | %00°0T | %SEFT | %6E£ 0T | %E6'6 | %000T | STI 9€°0 89. | 00% |pued| (z=9)"F7-T0 (c=0)°7 —
%66°'TT | %000T | %986 | %00°0T | %LTET | %STOT | %IG0T | %000T | 8¢I 9€°0 89L | 00z |pued| (z=1"7-10 | (c=0)°7-560 —
%6VET | %000T | %S6'6 | %00°0T | %CIET | %0T0T | %80°0T | %00°0T | 8T 9€°0 89L | 00z |pued| (z=0"7-10 | (c=P)°T7 60 —
BLLVT | BITTT | %SL6 | %00°0T | %6TFT | %S0T | %866 | %0001 | ST 9€°0 89L | 00T |pued| (z=1)"7-50°0 | (€=0)°T C¢L60 —
%Y ET | %EOET | %V6'0T | %0001 | %CL'€T | %POTT | %066 | %00°0T | 8TI 9€°0 89L | 00T |pued| (z=%)"7 G200 | (€=0)°T €L860 —
%BLTVT | %ESTT | %0V'6 | %0001 | %0THL | %LOTT | %9€0T | %00°0T | 8TI 9¢°0 89L | 00T |pued — (e=0)*7 —
UPVTL | %EET8 | UTVIL | %EVSL | %LIEL | %68 T8 | %8T9L | %V0'8L | 8TI 9€°0 89L | 00T |pued| (z=1)"7 — (g0=2)7-¢0
%6V'GL | %68ES | UIVSL | U8BE'SL | BISTL | %ETE’ | %L08L | %8LLL | 8TI 9€°0 89L | 00T |pued| (z=1"7 — (ro=+)7-¢0
BISEL | %I0T8 | %989L | %08 GL | %LE6'TL | BLVI8 | %0T9L | %8V'SL | 8C1 9€°0 89L | 00z |pued| (z=1)"7 — (200=2)>7 - 50
%SV'9L | BS6'E’ | UIV'6L | %G6°08 | %LV'GL | BLIER | %66'8L | %IS08 | 8TI 9€°0 89. | 00z |pued| (G=9"7-80 | (@=0)°7-10 | (¢0=+)7-¢0
%ST'GL | BIS'ES | WIV'SL | %6T 6L | %IVTL | %SE'ES | %00'8L | %IL8L | 8TT 9¢€°0 89 | 00z |pued| (c=9"7-80 | (@=0)*7-10 | (10=2)°7:50
%00TL | BIT'TS | BITLL | %99°9L | %SE€EL | %TLTI8 | %EV'IL | %0€9L | 8CT 9¢€°0 89L | 00z |[pued| (z=1)"7-80 | (2=0)*7-10 |(L00=4)>T-S0
%G9°9L | %ESES | BISBL | %8808 | %TVGL | %TV'ES | %9IE8L | %LV08 | STI 9¢€°0 89L | 00z |pued| (¢=1)"7-90 | (c=0)*7-20 | (§0=1)>7 <0
YU8T'CL | %IS'ES | %SE'SL | %I6'8L | %OETL | %0T'ES | %V0'8L | %Ge'8L | SCI 9¢€°0 89L | 00z |pued| (¢=1"7-90 | (c=0)*7-20 | (10=2)>7 <0
%G8'EL | BEET8 | UB69L | UVVLL | %OT'EL | BSLTI8 | %6V9L | %LOLL | STI 9€°0 89 | 00z |pued| (G=9"7-90 | (@=0)7-50 |(L00=21)T-¢0

197

%0STL | BY86L | %06TL | %V08I | %9 TL | %CE6L | %L6EL 8¢ 9€°0 89L | 00z |pued| (z=1)"7-36°0 | (c=0)°7-800
UYL | %8808 | UET'9L | %6TOL | %8E'EL | %SG 08 | %TL'GL 8¢ 9€°0 89L | 00z |pued| (z=n"7-60 | (c=P)°T-T0
%98°9L | %68ER | U68BL | %GI08 | %GLGL | BESTE] | WVLBL | %6T 08 | 8CI 9€°0 89 | 00z |pued| (G=9"7-80 | (G=0)°7-90
%889L | UFOF8 | UOT'6L | %80T8 | %SG0'9L | %EL'E’ | %ELBL | %6508 | 8TI 9€°0 89L | 00% |pued| (z=1)"7-80 | (¢=v)T7-<0
%SV'9L | %EO'ES | %EISL | UET'GL | %ESGL | %EGT8 | %ST'8L | %L9TVL | 8T 9¢€°0 89 | 00z |pued| (c=9"7-80 | (E=0)°7-¢0
%EOLL | %8LE] | UTS6L | %8G08 |%TIT'9L | %6E€8 | %T6°8L | %9108 | 8TI 9€°0 89L | 00T |pued| (z=1)"7-L0 | (¢=v)°T7-€0
UVTIL | %ESER | %998L | %608 | %6SGL | %OV'ER | %IT8L | %6C 08 | 8T 9€°0 89L | 00z |pued| (z=0"7-90 | (c=P)°T7 L0
%0G9L | %EEE] | TIT'6L | %8F'08 | %VS'GL | %S0'€8 | %T88L | %LE08 | 8TI 9€°0 89L | 00z |pued| (z=0"7-90 | (c=P)°7-¢0
%I99L | BIOTV8 | %ERBL | %SV'08 | %TI9CL | %6V'ER | %LI8L | %ET 08 | 8CI 9€°0 89 | 00z |pued| (G=9"7-90 | (E=0)°7 %0
%SV'9L | %OT'ES | %96 LL | %LT6L | %IV'GL | %08'T8 | %0SLL | %60°6L | STT 9¢€°0 89L | 00z |pued| (¢=1"7-S0 (e=0)*7
WYT'IL | %SEE8 | BGGLL | %96°6L | %VV'SL | %69T8 | %OELL | %TL6L | STI 9€°0 89L | 00z |pued| (z=0"7-50 | (6=0)°7-6L0
%OL'GL | %ISES | UOLBL | %6E08 | %VT'SL | %TT'E] | %LV'8L | %E€0'08 | 8CI 9€°0 89L | 00T |pued| (z=1)"7-50 | (¢=v)°T7-¢0
%T0'9L | %9IS'T8 | %EGLL | %G8'8L | %SE'CL | %0ETS | %60 LL | %ST'8L | SCI 9€°0 89L | 00T |pued| (¢=2)"7 70 (c=0)°7
WIL'GL | %69C8 | U68LL | %S96L | %ETGL | %¥VT8 | %TSLL | %¥C6L | 8TI 9€°0 89L | 00z |pued| (z=0"7-¥0 | (c=P)°7-80
%EI9L | YBIVT | UE6LL | %096L | %SGGCGL | %EIT8 | UO8LL | %9IE6L | STI 9€°0 89 | 00z |pued| (G=9"7-¥0 | (G=0)°7-90
UVE9L | %9ITT8 | U0GLL | %V6'8L | %EL'GL | BVTT8 | %00 LL | %T19°8L | STT 9¢€°0 89 | 00z |pued| (c=9"7-¢0 | (E=0)°7 L0
WVESL | %V908 | BITTVL | BIV'GL | %9LTL | %6E08 | %6TTVL | BYT'GL | STI 9¢€°0 89L | 00z |pued| (¢=17)"7-20 (c=0)*7
WICIL | BST'I8 | U6T'GL | UST'9L | %9E'GL | %9808 | %T0'SL | %T6'GL | 8¢l 9€°0 89L | 00z |pued| (z=1)"7-20 | (¢=v)°T7-60
%ES'CL | %6TTI8 | %FT 9L | %GLOL | %8ECL | %SO'TS | %96°GL | %TS9L | ST 9¢€°0 89L | 00z |pued| (¢=1)"T7-20 | (2=0)°7-80
WUYT'CL | BITI8 | %6CSL | %90°9L | %99TL | %SL08 | %E6TVL | %ISGL | 8CI 9€°0 89L | 00T |pued| (z=2)"7-G61°0 | (c=0)°T - <T060
%6SCL | BITT8 | %S6TL | %66'GL | %86'TL | %0808 | %IIOVL | %69GL | SCI 9€°0 89L | 00T |pued| (z=1)"7-61°0 | (€=0)°T <060
%S9GL | %E608 | UIF'CL | %69CL | %VO'SL | %P908 | %E’VL | %6TCL | 8TI 9€°0 89L | 00T |pued| (z=%)"7 G810 | (¢=0)°7 €¢L060
%ER'GL | %G808 | %BVO'GL | %OV'GL | %STGL | %0S08 | %EITL | %ITGL | 8T 9¢€°0 89L | 00z |pued| (¢=17)"7-8T0 | (z=90)°7 160
%SYIL | BST'I8 | Y8BT GL | USTIL | %EIGL | %6608 | %OT'GL | %60°9L | 8TI 9€°0 89L | 00z |pued| (z=1)"7-81°0 | (c=0)°7 280
%6T'9L | %8I T8 | %90 LL | %SOLL | %IV'SL | %6ET8 | %8E9L | %STLL | 8CI 9€°0 89 | 00z |pued| (G=9"7-810 | (6=0)°T 650
BYTVT | %OT0T | %VT0T | %0001 | %V9'E€T | %6E0T | %IV'6 | %0001 | 8CI 9€°0 89L | 00T |pued| (z=2)"7-GLT0 | (€=0)°T CCI60

198

%OTTL | %6V'I8 | %66°GL | VT EL | %6VEL | %L9°08 | %T9GL 8¢ 9€°0 89L | 00z |pued| (z=0"7-¥1 | (c=P0)°T €0
%GETL | BST'6L | %ESEL | UBL'GL | %S TL | %S8'8L | %TIEL 8¢1 9€°0 89 | 00z |pued| (G=9"7-c1 | (G=2)°7 10
%9G9L | %S6'E] | UGI8L | UFR08 | %6R'GL | %PSE’ | %IF8L | %0S08 | 8TI 9€°0 89L | 00% |pued| (z=1"7 (e=0)*7-cT'1
%99°9L | %00V | %90°6L | %VLO8 | %8L'GL | %SV'ER | %698L | %LEOS | STI 9€°0 89L | 00T |pued| (¢=1)"7 (e=0)*7 - 20’1
WST9L | %SLES | %ET 6L | %9L°08 | ULETL | %SV'ES | %06'8L | %TEO08 | 8T 9€°0 89L. | 00T |pued (e=1"7 (c=0)°7
%RTIL | %ETH8 | U6T 6L | %6808 | %9ITGL | %T9E8 | %F88L | %FS08 | 8Tl 9¢°0 89L | 00T |pued| (z=1)"F (t=1)*7 - 6.0
%V8IL | BOTT8 | %SGE6L | %E008 | %VSGL | %S8ER |%8I'6L | %IV08 | 8T 9€°0 89L | 00T |pued| (=17 (e=w)*7-¢0
WUVT 9L | BVIER | BTOBL | %9E6L | %TV'SL | BET'E] | %9LLL | %IL8L | 8CI 9€°0 89. | 00z |pued| (¢=1"F (e=0)*7 70
%ST 9L | BOL'ER | UEVBL | %OELL | %TIOCL | %ITER | %TOBL | %L IL | 8CI 9€°0 89L | 00T |pued| (z=1"7 (z=0)"7-¢0
UVLOL | BTSER | %8Y'BL | %ESIL | %06'SL | %L6T8 | %SV'8L | %VT'9L | STI 9€°0 89L | 00T |pued| (¢=1)"7 (z=0)°7 - 520
%IEEL | %0TTI8 | UVSCL | %OV TL | %6STL | %6508 | %FTGL | %080L | 8TI 9¢°0 89L | 00T |pues| (=1)"7 (1=v)*7 - 5270
%ISTY | %8I 69 | UEV'EY | U6SLS | %ILTI | %6069 | %0STY | %VELS | STI 9€°0 89L | 00T |pued| (z=0)"F (t=0)%7 - ¢20°0
%66°TS | %EO'6S | %G9TG | I | %0ETS | %TIG8G | BISTIS | %ET9F | 8T 9€°0 89L | 00T |pued| (z=1)"7 (1=0)%7 - ¢20°0
%T08G | %OV'G9 | %GL'8G | U0S' TS | %6¥'LE | %9679 | %¥6LS | %IETS | 8TI 9€°0 89L | 00% |pued| (z=1"7 (z=0)%7 - 62100
%OV'0S | BIB6S | BIV0S | %698Y | %SG 6V | %LI6S | WVL6V | %8E8Y | 8CI 9€°0 89L | 00z |pued| (z=1)"7 (z=0)%7 - €000
%S09E | UVO'LY | %9L'E€E | %8T9E | %CT'GE | %T8IY | %6I€E | %F19e | 8TI 9€°0 89L | 00% |pued| (z=1)"7 (z=")*7 - 5200°0
WFTIT | %FOVT | UFT'9T | %0S'0C | %ET'9T | %TS¥e | %96°ST | %890z | 8TI 9¢°0 89L | 00T |pued| (=1)"F7 —
%06°SL | %96°€E8 | IS BL | %LLOS | %ETCGL | %IVES | %FIBL | %6T08 | STI 9¢€'0 89L | 00g |pued| (2=7)"7 860 (c=0)°7
%SGCL | %ILE] | %OV'6L | %SV08 | %68 TL | BYEER | %06'8L | %V 08 | 8CI 9€°0 89 | 00z |pued| (c=9"7-86'0 | (G=2)°T 660
%TY'EY | %0869 | U06'€9 | %8LIG | %G8TI | %SV69 | %90€Y | %6E 9IS | 8CI 9€°0 89 | 00z |pued| (G=9"7-86°0 | (G=0)°T7 200
%E]GL | %SOE] | U9IS8L | UFF08 | %ETGL | %VEE’ | %SV8L | %¥6'6L | 8TI 9€°0 89L | 00T |pued| (z=9"7-GL60 (z=0)*7
%SL'OL | BEVTIR | %688L | %ST'I8 | %EICL | YBLE'ER | %698L | %9L°08 | STI 9€°0 89L | 00z |pued| (z=1)"7-96'0 | (c=0)°7-860
%8E0L | BOT'LL | %6V TL | BITTY | %SGS69 | %EEIL | %080L | %68€9 | 8CT 9¢€°0 89L | 00z |pued| (¢=7)"7-9670 | (2=0)°7 700
%EEIL | UEYES | UEIBL | %EI08 | %8IGL | %IGE’ | %S¥'8L | %8T08 | 8TI 9€°0 89L | 00z |pued| (z=0)"7-76°0 | (c=0)°T- 1670
%60°EL | %IS6L | %8ITVL | %IV'LI | %TETL | BIT6L | BIVEL | %8899 | 8CI 9€°0 89 | 00z |pued| (G=9"7-¥60 | (G=0)°T 900
%ITLL | %G6'ER | %IT6L | %80T8 | %VT'OL | %6V'ER | WILBL | %L 08 | 8CI 9€°0 89 | 00z |pued| (G=9"7-260 | (G=0)°T 960

199

%0S'9L | %86'ES | %6L'SL | %V0'C8 — — — — 41 9€°0 89L. | 00T |pued (e=1"7 (c=0)*7
YUVL'CL | %6TFS | %V96L | %GST8 — — — — (41 9€°0 89. | 00z |pued| (¢=1)"F (e=0)*7- <0
UV'9L | %T6'ES | %ST6L | %ELT8 — — — — (4 9€°0 89L | 00z |pued| (z=1"7 (c=0)*7 - cLe°0
%VO'TL | %6T'8L | %SL'TL | %9LGL — — — — (4 9€°0 89L | 00T |pued| (¢=1)"7 (e=0)%7 - ¢200
%68°GL | %EOTS | %90°6L | %EETS — — — — 9Gg 9€°0 89L. | 00T |pued (e=1"7 (c=0)°7
%GEIL | %VSES | %E0'6L | %ESTS — — — — 9Gg 9¢€°0 89L. | 00T |pued (c=1"7 (t=1)*7 - 6.0
YOT'LL | %STHS | %SV6L | %0T°C8 — — — — 9G¢ 9€°0 89L | 00T |pued (e=1"7 (e=w)*7- <0
%00°0T | %00°0T | %00°0T | %00°0T | %T0°0T | %00°0T | %00°0T | %00°0T | 8T 9€°0 89L | 00T |pued| (2=1)"7-¢ (1=0)7
%6T9S | %8I T | %TIL9G | %I6'0S | %ST'SS | %SV 19 | %IL'GS | %6705 | 8TI 9€°0 89L | 00% |pued| (z=9)"7-¢ | (¢=v)°7-200
%8E'GT | BI9TT | U6TFT | %V96T | %LEFT | %0LTC | %6T VT | %1961 | 8TI 9€°0 89L | 00T |pued| (=1)"7-¢ —
%00°0T | %00°0T | %00°0T | %00°0T | %00°0T | %00°0T | %0001 | %000T | 8TT 9€°0 89 | 00z |pued| (2=9)"7-¥ (1=0)°7
%00°0T | %00°0T | %0001 | %00°0T | %00°0T | %00°0T | %0001 | %0001 | 8TI 9¢€°0 89L | 00g |pued| (z=9)"7-¢ (1=0)*7
%00°0T | %00°0T | %00°0T | %00°0T | %00°0T | %00°0T | %00°0T | %0001 | SCI 9€°0 89L | 00z |pued| (¢=1)"7-G¢ (1=0)*7
%00°0T | %00°0T | %000T | %000T | %00°0T | %000T | %0001 | %0001 | SZI 9€°0 89. | 00g |pued| (2=9)"7'¢ (1=0)*7
%6LTL | BOT'8L | %TIEL | %IT'L9 | %86'0L | %IV LL | %68TL | %2999 | 8CI 9€°0 89. | 00z |pued| (2=9)"7-¢ (z=0)"7-20
%6669 | %0S9L | UEVTIL | UVTFY | %IF'69 | %C8'GL | %0L0L | %€9€9 | 8TI 9€°0 89L | 00T |pued| (=1)"7-7T (z=0)"7-10
%ILOT | %S96T | %SL6T | %I6TT | %0T'0C | %¥6'8C | %9V'61 | %661 | 8TI 9¢°0 89L | 00T |pued| (=1)"7-7T —
WIT'TS | %86'LS | %66'TS | %VT'SH | %IT TS | %CLLS | %680 | %ILFF | 8TI 9€°0 89L | 00T |pued|(z=7)"7-GL6T | (€=0)°T CCl00
WUVE8S | BSVTVY | %6E8S | %IVTS | %ESLS | %E6'EY | WOLLS | %68°0S | 8CI 9€°0 89L | 00T |pued| (z=1)"7-G6'T | (6=0)°T - <C00
%6079 | %EV'69 | %6099 | %EO'8E | %60'EY | %ET69 | %ETTFY | %19LS | 8TI 9€°0 89L | 00z |pued| (z=0)"7-6'1 | (c=0)°7-500
%69TV9 | UFSTL | VTGO | %ET6S | UVL'EY | %E60L | %LETI | %ELRS | 8TI 9€°0 89L | 00T |pued| (z=1)"7 68T | (c=0)°T - 52900
%90°69 | %S0'GL | %1669 | BFV'E9 | %TT'89 | %6V'TVL | %TE69 | %T0'E9 | STI 9€°0 89 | 00z |pued| (¢=9"7 481 | (c=0)°7 <L00
%VT'8Y | BIE'EL | %9IL69 | %GOF9 | %EEL | %IGEL | %EY8Y | %8E€9 | 8T 9¢€°0 89L | 00% |pued| (z=%9)"7-9g8T | (€=0)T - 4L800
%0889 | %OLTL | %FE69 | %T0°CY | %ST'89 | %¥TTL | %6889 | %erv9 | 8Tl 9€°0 89L | 00z |pued| (z=0"7-81 | (¢=0)°T-T0
%I6'69 | %OV'LL | BV TL | %69°L9 | %ET'69 | %FS'9L | %86°0L | %Ge'L9 | SCI 9¢€°0 89. | 00g |pued| (c=9"7-91 (e=0)*7-T0
%0STL | BET6L | UOTVL | %EOTL | %G8 TL | %ES8L | %0S€L | %I90L | 8CI 9€°0 89 | 00z |pued| (G=9"7-¢1 | (G=0)°T7 550

200

%LLO9 | BSTTL | %189 | %00 0L 8T1 g1 o 9¢z | el v (1=0)*7-¢0
%EG6'CL | %SL'TS | %S9OL | %EYLL 8¢ ¢10 9¢c | @l o (z=0)*7 70
%G9V | %SSTL | %L0O99 | %9T'89 8¢1T zro 9¢g | <1 L4 (t=0)°7 - 500
%EECES | %VIC9 | %ST'SS | %S8LS 8CIT g1o0 99¢ 48 * (c=0)%7 - €000
%6905 | %06'€9 | %EOTS | %VLGS 821 g0 9¢z | T | ¥ —
%ET'0G | BLL'GY | %SOVS | %8LTS 8T1 zro 9¢z | er | ® | (c —
%ESTV | %S6°LS | %I8CE | %EOOT 8¢ ero 9¢¢ | eI % | @=1"7-100 | (c=P)°7 90
%69'8E | %6G'SS | %6LTY | %GLT 821 zro 9¢g | oI % | (ct=9"7-100 —
%6E°6E | %6T'6% | %TO'ET | %9¢°0T 8¢1T zro 9¢g | <1 L} (z=0)"7-20
%89°99 | %EY9L | %9919 | %ESTI 821 g o 9¢z | T | ¥ (e=0)%7 - €000
%GG'89 | BISLL | %0V'TY9 | %06°€9 821 e o 96z | T | ¥ (e=0)7 - €000°0
%9889 | %96°LL | %SF'TY | %ITFI 8Z1 2o 9¢z | T | ¥ (t=0)%7 - c0 —a¢
%09°9L | BVEER | %SV LL | %IE6L 8¢ ero 96 | ¢ | V¥ —
UV6TL | %IV'ES | BIT6L | %19C8 ¥e0T| 8¥0 ¥201 | 00g |pued 7 (z=0)"7-20
%69°9L | %OL'ES | %SV6L | %VL'T8 ve0T| 870 ¥201 | 00T |pued "7 (c=0)%7 - ¢Le°0
%GR'GL | BVEES | %86'8L | %0V'T8 ve0T| 870 ¥201 | 00g |pued "7 (z=0)°7 - 520
%6V'GL | %8SES | %E0'6L | %9918 o1¢ 870 ¥Z0T | 00T |pued "7 (c=0)*7
%BEL'GL | %69°E8 | %9E6L | %0TT8 4 8%°0 ¥20T | 00g |pued "7 (e=0)"7-¢0
%I8CL | %00V | %SS6L | %E6'TS 9¢ST| 9270 89L | 00T |pued "7 (z=v)*7 - 520
%ISCL | %EOFS | %60°6L | %6818 ¥e0T| 9€0 89L | 00z |pued "7 (c=0)*7
%I89L | BSVE] |%SGL6L | %S8T8 ¥e01| 9€0 89L | 00z |pued "7 (z=0)"7-¢0
%60°9L | %6IER | %EE6L | %EITS ¥201| 920 89L | 00T |pued "7 (e=0)7 - ¢L£°0
%SEGL | BI6'E’ | %IV6L | %S98C8 ¥201| 920 89L | 00T |pued "7 (c=v)*7 - 520
%OT'9L | %STF8 | %EI6L |%E0'E8 ¥ToT| 920 89L | 00T |pued "7 (t=v)*7 - 520
%SV'EL | %IB08 | %EV'SL | %8I 6L ve0r| 9€0 89L | 00T |pued "7 (z=v)*7 - 500
%69°0L | %ET8L | %SVTL | %6E9L ¥e0T| 9€0 89L | 00z |pued 7 (z=0)%7 - ¢20'0

201

BY6TVE | %699E | %TFLT | %00°0T 8¢ 9¢°0 89L | Tl | * (e=0)*7-¢0 —
%9L'L9 | %EITL | %S6'SS | %98°CS 8¢1T 9€°0 89L | @I x (6=0)*7 - 5000 —
%OT'L9 | %OF'TIL | %90°SS | %8T'2S 821 9€°0 89. ATENED 3 (z=0)%7 - €000 —
%IV'69 | %86'TL | %6009 | %SI6S 8¢ 9€°0 892 SIS 3 (6=1)%7 - 52000 —
%IEOL | BIETL | %E6'T9 | %5G9°T9 821 9¢°0 89L | Tl | * (e=0)7 - 1000 —
%680L | BILTL | %ES'EY | %689 8T1 9€°0 89L | Tl | ¥ (e=0)7 - €000°0 —
%S880L | UBLTL | %8T'EY | %889 8¢ 9¢°0 89L | Tl | ¥ (e=0)*7 - €000°0 —
%06'0L | %YT'SL | %EETI | %V6°99 8¢1 9€°0 89L | @I x (6=0)*7 - §2000°0 —
%STTL | BEIGL | %BELY | %ET'8Y 821 9€°0 89L | TT | ¥ — (§0=+)7-100
%8E'LL | UVIER | %8]'BL | %IV08 821 9€°0 89L | er | O — (60=+)7 - 100
%98 TIL | BVE 9L | %VL'89 | %00°0L 821 9¢°0 89L | Tl | * — (§0=4)°7 - €200
%00°LL | %E6'E] | %S9'8L | %LT08 821 9¢°0 89L | eI | O — (§0=1)°7 - €200
WBIETL | %80°9L | %0L69 | %EVOL 8¢ 9¢°0 89L | Tl | ¥ — (g0=+)>7 - 500
%0E'69 | BOETVL | %VEBY | %IT'69 8¢ 9¢°0 89L | TT | * — (§0=4)°7 - 550
%VL'8Y | B68TL | %OLLY | %969 821 9€°0 89L | TT | * — (g0=2)07-¢0
%6LYI | UBELOL | %STFI | %09°G9 821 9€°0 89L | TT | # — (g0=1)7
%ETEL | %60'T8 | %00TL | %VEGL 821 9¢°0 89L | Tl | DO — (g0=1)7
%86°0L | %6LLL | %8OTL | %EITL 8T1 gro 9¢z | @l O 7 (1=0)7 - 18T —
%ET99 | %6TFL | %ITLY | %0T'69 8C1T ero 9¢g | oIl v "7 (1=0)*7 - g1 —

6L TL | %ET8L | BELTL | %ITEL 8¢1 g10 96t | @l O "7 (1=0)°7-6¢1 —
BIT'GL | %00'T8 | %SGL'GL | %08°9L 821 zro 96z | Tl | O "7 (1=0)°7-6¢1 —
%STTL | %EE8L | %VE'TL | %ET'EL 821 zro 9¢c | Tl o "7 (e=0)*7 —
%EV'GL | %VOI8 | %98'GL | %8V'9L 8CT g1o 96% 4 o "7 (c=0)*7 —
BIVIL | %6C6L | %¥8TL | %0TTL 8z1 zro 9¢z | el O "7 (1=0)%7 - 6290 —

%IV TL | %TO6L | %68TL | %ETTL 8¢1 ¢10 9¢c | @l O "7 (e=0)*7- <0 —
%00°9L | BIIT8 | %EE9L | %ELLL 821 zro 96z | Tl | O 7 (z=0)"7-¢0 —

202

%0E'C9 | %60°TL | %6SG9 | %ES99 8¢IT 9¢€°0 89. 4 X (c=1"7 (c=0)*7
%Ye69 | %T9GL | %8869 | %¥8 0L 8¢ 9€°0 89L | @I X (e=n"7 (z=0)*7- <0
%9L°89 | %88TL | %VO0L | %VE 0L 8¢1T 9€°0 892 SIS S (e=n"7 (e=0)*7- <0
%0T'99 | %ST'TL | %ST'99 | %G9°99 8¢ 9€°0 892 ATENED 3 (c=1"7 (2=0)°7 - 50°0
%EL8Y | %99°9S | %9ELY | %0T 0S 8¢1T 9€°0 892 AT IS S (e=n"7 (e=0)%7 - 000
%YI'8E | %SE'6Y | %6I'SE | %8G'EY 8T 9€°0 892 41 X (c=1"7 (€=0)%7 - 50000
%09°CE | BBT'LY | %99'9E | %SV6€ 8¢ 9€°0 89L | Tl | * (z=1"7 —
%E6'0L | %SEIL | RIS TL | %STTL 8¢1 9€°0 89L | @I X | @=»"7-¢0 | (E=0)°T-0
%IT'TL | %0S'9L | %99 TL | %60°EL 8¢1T 9€°0 892 | ¥ | (e=p"7 920 | (2=v)°7- 920
%EL']Y | BYOTVL | %EOLY | %SVLI 8¢ 9€°0 892 gl | ¥ | (&=p"7 10 | (2=0)°7-¢0
%ETTL | %VS9L | %ITTL | %0EEL 8CT 9€°0 892 (4 X | @=n"7-10 | @=9)7-10
%0067 | %0909 | %0¥'SY | %SG 821 9€°0 89L | oI | % | @=n"7-10 —
%9E'TL | %S0'LL | %EITL | %V6EL 8C1T 9€°0 89L | eI X | (e=9"7-900 | (2=0)°T-500
%68 TL | %FT'IL | RIS TL | %VETL 8¢1 9€°0 89L | @I X | (6=9"7 9000 | (6=0)°T - 62600
%60°TL | %IFFIL | %8GTL | %OVEL 82T 9€°0 89. 1 | ¥ | (@=1"7 5200 | (2=0)°7 - <200
YU8LTL | %EEIL | %ISTL | %ETTL 8¢ 9€°0 892 gl | ¥ | (&=1"7-200 | (@=0)°T €00
%ESTE | %E6'TE | %S0'8T | %00°0T 8CT 9¢€°0 89. (4 X | (@=1"7-100 | (€=0)°7-¢0
%EVOL | %SV'GL | BILO0L | %PSTL 8¢I 9€°0 892, 4 X | (c=1"7-100 | (c=0)°7-100
%06'TY | %SLOS | %SSTIV | %YV 8¢ 9¢°0 89L | oI | ¥ | @=1"7-100 —
%EE0L | %OSTL | %LOLY | %GE99 821 9€°0 89L | @I X | (@=9"7-2000 | (6=0)°7 5000
BITTE | %90°SE | %6L LT | %00°0T 8C1T 9€°0 892 ol | | (@=1"7-1000]| (@=9)*7 <0
%GTO0L | %IT'SL | %SS99 | %ET 99 8¢ 9€°0 892 gl | ¥ | (@=1"7-1000]| (€=0)°7 1000
%VT8Y | %I6°9G | %ELOV | %ITY 8CT 9¢€°0 89. (4 X | (=9"7 1000 —
%0T0L | %6TGL | %ET99 | %FT'99 8¢I 9¢€°0 89. 4 X |(e=1"7 - 0000 (¢=0)°7 - 50000
%LE'ES | %IOT9 | RIVEY | %VETY 8¢ 9¢°0 89L | =TI | % |(@=1"7 50000 —
%0LT9 | %S90L | %6V6S | %TE 09 821 9€°0 89L | I | % |(@=1"7 10000 —

203

%YOV9 | %S6TL | %V6'ES | %V0'SS 8TT z10 98L | 00z |pued — — (=17
%LL'BY | %TIT'8L | %8ET9 | %6TH9 STT T10 98. | 00z |pued — — (c=1)>7
%ST'EL | %IF08 | %IT'0L | %SE0L 8CT z1o 98L | 00g |pued — — (1=1)°7
%8T'09 | %VS'89 | %8L09 | %E6 19 4 9€°0 89 4 X (c=1"7 ¢ (e=v)*7 -2 —
%0809 | %9989 | %9819 | %IT€9 8C1 920 89 4 X (e=1"7-¢ (e=0)*7 —
BIETY | %LL6Y | %CETIY | %VI'G9 8CT 9¢°0 89 4 X | (@=1"7-¢1 (e=0)7 -1 —

<

204

67180 €€92°0 6018°0 80940 8¢1 90°0 8¢T 00¥ |pued — - (€000=1)°7

09%L°0 | SOTL'0 [89%L'0 | 600 | 82T | 900 8¢T | 007 |pued — — (L00=1)T
€108°0 | €TEL'0 | 466L°0 | €6TL0 | 82T | 900 8¢T | 00F |pued| (z=1)"7-ST0 (e=0)*7 —
g6SL°0 |PTOL'0 | 129L0 [800L°0 | 8T | 900 82T | 00F |pued| (z=1)"7-¢0 | (g=0)°7-CL0 —
8€6L°0 | T69L0 | G€6L°0 | €99L0 | 8T | 900 82T | 00% |pued (z=1"7 (e=0)°7-cLee —
0F88'0 | 7L8'0 | 08880 | ©698°0 | 8ET 90°0 8z1 | 007 |pued (c=9"7 (1=0)*7 - ce9¥ —

908L°0 lqon 88L.L°0 LETL'O 8¢1 90°0 8¢T 00V |pued| (z=1)"7 S0 (e=0)*7 - qo’1 -

0698°0 c0€80 964980 88180 8¢1 90°0 8¢T 00V |pued| (z=1)"7-GL (c=0)°7 - <0 -

€96.°0 | 096L°0 | 8S6L°0 | G0SL0 | 82T 90°0 82T | 00% |pued — — (1=2)7
L€9L°0 | 90TL°0 | ©L9L°0 | 0LTL0 | 82T 90°0 8T | 007 |pued — — (600=1)7
66940 | 922L°0 | 699L°0 | 00840 | ST 900 8z1 007 |pued (c=n"7 (c=m)*7-¢ —
€69L°0 | GTTL0 | L69L°0 | G9T.°0 | ST 90°0 8T | 007 |pued| (z=9)"7 - €€e€0 (e=m)*7 —
GLI8'0 | 86SL°0 | 9618°0 | 6SL'0 | 8TI 90°0 82T | 007 |pued — — (F=+)7
gLLL0 | 09220 | TRLL'O | 0L2L0 | 82T 90°0 82T | 00% |pued (c=n"7 (g=»)*7-¢¢ —
GzLL'0 | T6TL0 | 689L°0 | T2IL'0 | 82T 90°0 8ZT | 00% |pued (c=1"7 (z=p)°7 —
67LL°0 | €0EL0 | GLLLO | 062L°0 | STI 90°0 8T | 007 |pued (c=1"7 (1=p)*7 - cz9°¢ —
1828°0 | T€08'0 | L6280 | 6€08°0 | 82T 90°0 82T | 007 |pued (c=n"7 (z=0)7 -6L8% —
19LL°0 | 6G22°0 | L¥LL°0 | 8810 | 82T 90°0 82T | 007 |pued — — (T 0=1)7
696L°0 | 8L€L°0 | 6L6L°0 | SOVL0 | STT 90°0 82T | 007 |pued (c=n"7 (g=»)*7-¢0 —
PAUOD GAUOD FAUOD GAUOD wiojun~ 7 uBlle~ 7 SMISELU0O~
. oz1g .
SN T HSIN TeA ssoxpy | A T IET) o ol syoody | -yrug coss01]

719G UOIepPI[EA | p[Og-G 19§ Sururery,

"“UOTISUOWIIP SSO] oUu0 JO oIy dsiodAT jun oy} uo oAI] Ao} 97 ‘soanjes] ndino oyl Jo UOISUSWIP JUSIQUIR

o[} smoYs (, WI(],, Se pajeIadlqqe) Ajeuolsuawi(] *(,pued,, Se pajousap) UOIJRZI[RIIIUI JIOM]OU PIRPUR]S 9sN 9[qR) SIY) Ul SIOPOdUS [
"19S UOTJRPI[RA INO P[OY 9Y) Pur jas Jururer)

91} JO UOIYRPI[RA SSOID P[OJ-G ® 1[30(RIA ‘SUOIJRAIIOR AUOD I0 GAUOD U0 pourer) 10301paxd yjdop NND ®© Jo (HSIN) 10110 porenbs ueow
£q paanseour Aenb uorjejuesardor Iopoous o) 110dax 9p\ "SIBPOOUd g A-HLJIA((-N AN F9 [[® 10J suorjeoymoods juowttodXy §°y o[qR],

205

92G8°0 | 168L°0 | LIS8°0 | 60620 | 8TT 90°0 8zl | 00% |pued| (z=4)"T-¢ (e=2)*7-¢0 —
1628°0 | 986L°0 | 0SE8°0 | 36SL0 | 8al 90°0 8zT | 007 |pued (c=1"7 (e=»)*7-¢¥ —
¥88L'0 | L6GL0 | 006L°0 | €2eL0 | 82T | 900 8zl | 00% |pued| (g=1)"7-¢0 | (G=0)°7-GL1T —
TY6L'0 | G9TL0 | ZT6L0 | TTEL0 | STl 90°0 8¢1 | 007 |pued (c=9"y (1=0)*7-¢¢’1 —
¥2z8'0 | 00LL°0 | SZE8'0 | 0.9L°0 | 8TT 90°0 8¢1 | 00% |pued (c=9"7 (1=0)°7 - ¢L0 —
1G94°0 | €9TL°0 | 829L0 | T8TL0 | 82T | 900 8¢T | 00F |pued — — F0=2)7
096L°0 | 927°0 | 086L°0 | LLFL'O | 82T | 900 8¢ | 00% |pued (z=1"7 (c=0)°7-c18°¢ —
€r9L’0 | 09TL0 | G¥9L°0 | €0TL'0 | 8El 90°0 8zl | 007 |pued (c=9"7 (c=0)*7-¢ —
1688°0 | 0S78°0 | 9688°0 | @gk80 | 82T | 900 8zl | 00% |pued| (z=%)"7-0T (e=0)*7-¢0 —
PIES0 | 808L'0 | GGES'0 | 6T8L0 | 82T | 900 8zl | 00F |pued| (z=9"7-¢ (6=0)*7-¢0 —
16GL°0 | 092L°0 | T6GL°0 | 68¢L0 | 82T | 900 82T | 007 |pued (c=n"7 (c=0)*7-¢T —
0€08°0 | €5¥L°0 | 0L08°0 | 9SFL'0 | 82T | 900 8gT | 00% |pued| (z=4)"F - LEST0 (e=p)°7 —
T0LL°0 | €6TL°0 | €7LL0 | ¥E€€L0 | 86T | 900 8¢ | 00% |pued — — (c0=1)7
GILL0 | 6SGLO | PFLLO | 192L°0 | STl 90°0 8gT | 007 |pued (c=1"7 (e=m)°7-¢1 —
€89L°0 | SE€TL0 | €TLL0 | €0TL°0 | 82T | 9070 8¢T | 007 |pued (c=1"7 (g=v0)*7 -cere —
ST68'0 | LTLS'0 | G880 | 66980 | 82T | 900 82T | 007 |pued (z=1"7 (1=0)°7 - cL8F —
LPLL0 | €TPL0 | 90LL°0 | 09€L0 | 82T | 900 8zT | 007 |pued (c=n"7 (6=0)*7 - ¢T'C —
€008°0 | TESL'0 | €008°0 | PISL'0 | 82T | 900 8z | 00F |pued (z=1"7 (g=0)°7 -cLe —
9%6L°0 | ¥GEL'0 | T68L°0 | 60SL°0 | 82T | 900 8¢ | 00% |pued (z=1"7 (c=»)%7 - qz'1 —
€280 | 56080 | GES8°0 | 60T8'0 | 82T | 900 8z | 00% |pued| (g=1)"7-6¢T | (3g=0)°T-CCl0 —
8TT8'0 | 8LFL0 | 6218°0 | L67L'0 | 8gT 90°0 8¢1 | 007 |pued (c=9"y (¢=0)*7 -cel'¥ —
G8LL°0 | VOEL0 | LPLLO | ©6TL°0 | SET | 9070 82T | 007 |pued (z=1"7 (1=0)*7 ¢ —
98LL°0 | ¥SPL0 | TGLL'0 | 62EL0 | STT 90°0 8zl | 00% |pued| (z=%)"7-G0 (6=0)*7-¢0 —
STLL0 | LFOL'0 | ¥1LL°0 | ¥POL0 | 82T | 900 8gT | 00% |pued| (z=%)"7-G0 (e=0)*7 —
688L°0 | €6TL°0 | 0T8L°0 | I€6L0 | 82T | 900 8¢ | 00% |pued (z=1"7 (1=P)°7 -¢'1 —
06T8'0 | L8LL'0 | G610 | TgLl'0 | 82T | 900 8gT | 00% |pued (c=1"7 (c=0)*7 ¥ —

206

8098°0 | TF0S'0 | L6S8°0 | 9080 | 8TT | 900 8zT | 00F |pued| (z=9"7-¥ (e=0)*7-¢0 —
TP6L°0 | €0GL°0 | €06L°0 | S6¥L°0 | 82T | 9070 8¢T | 007 |pued (c=n"7 (e=0)*7 - cz¢ —
GeE8'0 | STLL0 | 84280 | T0SL'0 | 8T | 9070 82T | 007 |pued — — (e=1)7
0%9L'0 | T98L'0 | €994°0 | L8€L°0 | ST 90°0 8¢1 | 00% |pued — — (e'0=2)7
L0180 | #L8L°0 | 22180 | 96SL0 | 82T | 900 8zl | 00F |pued (z=1"7 (6=0)*7 - ¢z0 —
8TLL'0 | 082L°0 | €0L°0 | 98L0 | 82T | 900 8¢ | 00% |pued (z=1"7 (1=0)°7 -cLee —
Gees’0 | 0S8L°0 | GLES'0 | 098L°0 | 82T | 9070 8¢T | 00% |pued — — (01=1)°7
GLSL'0 | ¥TOL0 | 98GL°0 | ©90L°0 | 82T | 9070 8¢T | 007 |pued — — (10=14)7-50
L98L°0 | 0LEL'0 | 6€8L°0 |602L0 | 82T | 900 82T | 007 |pued (c=n"7 (1=0)*7 ¢ —
TPI8'0 | 699L°0 | 80280 | 969.°0 | 8ZT | 900 8zl | 00% |pued| (z=%)"7-GT (c=0)*7-¢0 —
16L8°0 | ¥808°0 | €€98°0 | T0OI80 | 8T | 900 8z | 00% |pued (z=1"7 (e=0)°7 -cL¥ —
G080 | TETS'0 | TTIS8'0 | 09180 | 82T | 9070 8¢ | 00% |pued (z=1"7 (c=0)*7-¢L —
§9LL°0 | 66TL0 | €6LL°0 | €Sgl0 | 82T | 9070 8zl | 00F |pued| (g=%)"7-G0 (c=0)*7-¢1 —
T67L°0 | ¥eTL0 | 68GL°0 | FL0L'0 | 82T | 9070 8¢T | 00% |pued — — (T0=1)7
LT98°0 | ¥808°0 | T€98°0 | 2L080 | 82T | 900 82T | 007 |pued (c=n"7 (c=0)*7 ¢ —
0L6L°0 | S0SL°0 | Gg6L°0 | 0TVL0 | 8Tl 90°0 8T | 00V |pued (c=9"7 (e=0)°7 - ce9e —
L9940 | 0902°0 | 199L°0 | 2STL0 | 82T | 900 8¢ | 00% |pued (z=1"7 (1=0)*7-cere —
LTI8L0 | ¥6TL°0 | €98L°0 | 2SeL0 | 82T | 900 8¢ | 00% |pued (z=1"7 (1=0)*7-cL¢ —
$T9L'0 | 8G0L'0 | ¥6SL°0 | 890L°0 | 82T | 900 8gT | 00% |pued — — (L00=1)>7 - <0

207

%986 | %VETL | %SET6 | %I6°0L | STl €00 | ¥8€9T | 82T | 0¥z |pued X (e=1"7-50 (c=0)%7 —
%0016 | %9169 | %LT06 | %¥eL9 | Sel €00 | ¥8€9T | 8eT | 0¥z |pued , (e=1"7-%0 | (c=0)*7-91 —
%8S T6 | %9STL | %VT'T6 | %L90L | 8Tl €0°0 | ¥8€9T| 82T | 0OFg |pued /, (e=1)"7-¢£0 (c=0)%7 —
%YT'T6 | %0L0L | %LS06 | %LL69 | STl €00 | ¥8€9T| 82T | Oz |pued / F=1"7 620 (c=0)°7 —
%00°G %00°'T %6V %00'T | 8¢T | €00 |¥SE9T| ST | OFg |pued , (e=1"7-20 | (c=0)*7-81 —
%9806 | %9¥0L | %8006 | %LT69 | 8Tl €0°0 | ¥8€9T| 831 | OFg |pued , (¢=9)"7-20 (c=0)%7 —
%9L°06 | %ST'69 | %E868 | %06L9 | 82T | €00 |¥8L9T| 8T | OF¢ |Pued , (9=1"7 - L1°0 (e=0)°7 —
%8968 | %0689 | %G6'88 | %ISL9 | 8T | €00 | PSEIT| 8TT | OFg |pued , (L=9"7-9T0 (c=0)*7 —
%96'88 | %TV'L9 | %S8T'88 | %699 | 8¢T | €00 |¥8€9T| 8¢T | OFc |pued / (8=1"7 - cz1°0 (c=0)°7 —
%eTh'S %eT 1 %eT'S %e0'T | szl €00 | ¥8€9T| 82T | OFc |pued — (c=0)*7 ¢ —
%98°0L | %0068 | %E6'89 | %rSLe | 82l | €00 |¥8€9T| 8¢T | 0%z |Pued — — (=107
%STF8 | %9¥'Ge | %E0'€8 | %e9'eS | 8¢l | €00 |¥8€9T | S¢I | 0%z |Pued — — (c=+)>7
%TE8S | %90F9 | %ELLS | %61C9 | 8¢T | €00 | ¥SE9T| 8TT | OFg |pued — — (1=1)>7
%0816 | %8669 | %IT'T6 | %9589 | 82T | €00 |¥8€9T | 8T | 0OFg |Pued — — (g0=1)7
%V9T6 | %0STL | %00T6 | %S9TL | 82T | €00 |¥8€9T | 8T | 0% |pued — — (L00=1)7
%T1'98 | %VTV9 | %v9'e8 | %Sk | sel €0°0 | ¥8€9T| 8T | 0¥z |pued — — (100=1)7
oreq-eIjuy WLIO]
gdoy 1doy gdoy 1doy Ehou__:_._Q :w__mQ w>_“mm:c8Q
i [y] resuy| 978 | 9%IS |syoody | gy
} Aoemooy } Aoemooy ‘Tep ssor) onony | ved soss0r]
19§ uoIRpIfRA PIOg-¢ 198 Sururedf,

((61°y) woryenby ‘sa (0z'y) uoryenbyy “2-2) ononb oy 0} "y I'Mm

S90UR)SIP 0} UOIYIPPR UL [DIRY UIYIIM S90URISIP ostmIred Sapnjoul uorje[nofes WHoun~ 191joym s9j0usp UWnod yojeq-eIjuy, o) ‘Weuny 104
"“UOTISUOWIIP SSO] oUu0 JO oIy dsiodAT jun oy} uo oAI] Ao} 97 ‘soanjes] ndino oyl Jo UOISUSWIP JUSIQUIR

o[} smoYs (, WI(],, Se pajeIadlqqe) Ajeuolsuawi(] *(,pued,, Se pajousap) UOIJRZI[RIIIUI JIOM]OU PIRPUR]S 9sN 9[qR) SIY) Ul SIOPOdUS [
"}9S UOIJRPI[eA JNO P[OY O} PUR 108 JUIUIRI} 9} JO UOI)RPI[BA SSOIO P[OJ-C € Y)O] BIA ‘SUOIJRAIIOR

10Ae] ojewrynuad UO IoYISse[d IeaUl] & Jo Adeinooe Aq painseswt Ayenb uoryejuosordor 1opoous o1y 310dox opy (6107 T8 10 9H) (0DOIN)
1SRIJUO) WNIUSUWIOJN UO Paseq SPOYJol SUISN PAUTRI} SISPOOUL ()GI19NSOY (0T-LANTDVIN] G [[® 10} suorjeoymads juswiledxy Gy o[qe],

208

%95°0T | %E6°C %L6'6 %er'z | 8¢l | €00 |¥Se9T| ST | OFg |pued , —
%SV'68 | %0189 | %E6'88 | %IL99 | 8T | €00 |¥SE9T| 8TT | OFC |pued , (e=0)*7 70
%9L68 | %TESY | %PT68 | %V0OL9 | 8¢T | €00 | ¥SE9T| 8TT | OFg |pued , (e=0)*7 %0
%T6'06 | %VP0L | %ES06 | %E£0'69 | 8Tl €00 | ¥8€9T | 82T | Oz |pued / (e=0)*7-90
%90'T6 | %TTIL | %EL06 | %SFOL | 82T | €00 |¥SE€9T| 8T | OFE |pued / (2=0)*7-80
%9TT6 | %9%0L | %EE06 | %LF69 | 8cT | €00 | ¥SEL9T| STT | OFG |pued , (c=0)°7 -3
%9816 | %TETL | %ES06 | %99°0L | 82T | €00 |¥8€9T| 8¢T | 0%z |Pued , (e=0)°7 - L
%VT 16 | %T0TL | %E906 | %6VO0L | 8¢T | €00 | ¥SE9T| 8TT | OFC |pued , (¢=0)*7-9
%8TT6 | %VO'EL | %LOT6 | %96'TL | 8¢T | €00 | ¥SEIT| 8TT | OFg |pued / (e=0)*7-¢
%re'T6 | %OETVL | %E0T6 | %Ee6'TL | 8Tl €00 | F8€9T | 82T | Oz |pued / (c=0)°7 ¥
%VLT6 | %09FL | %VTT6 |%6V'€L | 82T | €00 |¥SE€OT| 8¢T | 0% |pued / (c=v0)*7-¢
%95T6 | %SY'EL | %60T6 | %€0TL | 82T | €00 |¥8€9T | 8¢I | 0%z |Pued , (c=0)7-¢
%8E'T6 | %0SEL | %6616 | %IeTL | 8¢T | €00 | ¥SE9T| STT | OFC |pued , (e=0)*7-6¢
%YTT6 | %00°€L | %66'T6 | %LLTIL | 82T | €00 |¥8€9T| 8T | 0% |Pued X (e=0)*7-6¢
%OT'T6 | %S9EL | %60T6 | %99TL | 8Tl €00 | 89.z€ | 8¢T | OFg |pued / (c=0)*7 ¢
%08°26 | %FLEL | %IeT6 | %69°TL | 8Tl €00 | ¥8€9T| 8T | OFg |pued / (c=0)*7 ¢
%FLT6 | %VSEL | %80T6 | %IFTL | sel €00 | 89LTE| 8T | Oz |pued X (c=0)*7 ¢
%VLT6 | %0€E€L | %986 | %6TTL | 82T | €00 |¥8E9T | 8EI | 0%z |Pued X (e=0)*7 ¢
%TTT6 | %08'EL | %ILT6 | %6eTL | 8¢T | €00 | ¥SE9T| STT | OFg |pued /, (e=0)*7 -1
%TLT6 | %SVTL | %STTI6 | %SFOL | 8¢T | €00 | ¥SE9T| 8TT | OFg |pued , (c=0)°7
%STTI6 | %V90L | %LO06 | %6969 | 8TT | €00 | ¥SEIT| 8TT | OFg |pued X (c=0)7
WYT'T6 | %VS69 | %9906 | %L089 | 82T | €00 |¥8€9T| 8T | OFg |pued , (c=0)°7
%IET6 | YOV 1L | %IOT6 | %E€c0L | 82l €0°0 | ¥8€9T| 8T | 0¥z |pued / (6=0)*7-6L0
%0616 | %SLTL | %IST6 | %9LTL | 82T | €00 |¥8€9T| 8¢T | 0%z |Pued , (c=0)"7-T1
%8TT6 | %90°TL | %6916 | %ITIL | 8T | €00 |¥SE9T| STT | OFg |pued , (e=0)*7 71
%90°C6 | %06°TL | %I9T6 | %EO'TL | 8T | €00 | ¥SE9T| 8TT | OFg |pued , (c=0)°7

209

=" =0)%7 -7
%TV' 16 %T6°0L %LL 06 %2969 8CIT €00 78€9T | 8cCI 0o¥c | pued (c=9"y (c)°T

. : ued (z=1"7 (z=m)*7 ¢
%08°16 %08°0L %ET'16 %8969 8CIT €00 89.C¢ | 8CI ove |pP — =

. : ued = =
%2098 2%9¢°09 %LIV8 %EV'8S 8CIT €00 78€9T | 8cCIT ove |P

210

%SLTL %TE 99 %10VL %8L99 | 00gT | S000°0 00v T pued a — — (60=1)"7
%VETL %2L0799 WBLLTVL %T0°L9 | 00CT | S000°0 001 T pued a — — (80=1)"7
%97 9L %9L°L9 %T0VL %68°L9 | 00CT | S000°0 00v T pued a — — (L0=1)7
%I8°€L %8889 %8V'GL %1989 | 00CT | S000°0 001 T pueJ , — — (90=1)>7
%L0VL %86°89 %LT 9L %2689 00¢T | S000°0 007 T pued Va — — (g0=1)>7
TG LL %98°L9 %8G LL %cL'69 | 00T | S000°0 00¥ 1 pueJ / — — (F0=1)>7
%0T°6L %LGEL %Ve 8L %S8°¢L | 00gT | S000°0 00r T pued a — — (e0=1)"7
%V8'8L %IGTL %676 %€eeL | 00TT | S000°0 00v T pued a — — (6z0=1)"7
%9108 %€9°GL %80°18 %EeTL | 00CT | S000°0 00v T pued a — — (T0=1)7
%98°€8 %6LVL %0618 %T8'GL | 00TT | S000°0 00v T pueJ / — — (10=1)7
%8C°C8 %TG"LL %TeE€8 | %LE€9L |00TT | €S000°0 007 T pueJ / — — (5L0°0=1)7
%98°€8 | %69°LL | %V9°E8 %8¥°GL | 00T | S000°0 00¥ 1 pueJ / — — (c0'0=1)>7
%8858 %VeGL %0828 %c0°GL | 00gT | S000°0 00r T pued a — — (T000=1)"7
%VSe'T8 %9879 %V6°C8 %L6'7L | 00CT | S000°0 0or T pued a — — (500°0=1)7
%L0°€8 %ET LL %0618 %€e9L | 00TT | S000°0 00v T pued X — — (1=21)7

itle) N D TN wiojun~ 7 :m__mQ 7 ansenuod

1 £oenooy 1 £oeanooy Tep ssoap | | AT TEHUL :moapwmm SPOE | MUY | UOHEZ[RHION SossOrT
J0g UOIYepI[eA PIOA-G 108 Surured],

‘por1oder osfe ore (SULLMDIOO NeN '2°1) A[Iqe)sur Jururery

WOIJ IOPNS e} SUOI}RINIPUOd 9 "TWYILIOS[e SI0D9A JYSNOYI,-3PIMY) paylpowiun oY) SUIST Paule}qo SI Jopodue pazifeuwiouun AUo oy J,
"(R107) 907 pue URIRMSHFOT SUIMO[[O] ‘SYSB]) WRAIISUMOP I0] Post

Buro(9I0Jo(POZI[RULIOU SARM[R 9IR SoINjes] o) ‘(UWM[0D UOIIRZI[RULION],, Ul PIJRIIPUI) POZI[RULIOU-Z) ST I9POOUD 9} IoYoyM JO SSo[pIesay]
"UOISUSUWIIP SSO] oUO JO 9IodsiodA1 J1Un o1} UO 9AI[SIOPOIUD POZI[RULIOU-Z] WO S9INjed] '97 ‘soinjes] jndino o) Jo UOISUSUWIIP JUSIUIR
o[} SMOUS (WL, Se PajRIAdIqqR) A}[RUOISUOWI(] (, PUBI,, SB PIJOUSP) UOIJRZI[RIIIUI JIOMIOU PIRPUR)S OSN S[(R] SIY) Ul SIOPOIUS [[Y
"(y[Se) UIROIISUMOD 9T} JO) 3OS UOIJRPI[RA JNO P[OY oY) pue (JsB) WIRDIISUMOP 1]} JO) 198 SuIUIRI} 91[} JO UOIJepI[RA

SSOID PIOJ-G ® [)O(BIA ‘SYSB] UOIIROYISSRID ATeUulq (Y[)) JUSWIIULG JoNPOIJ IoWO0Isn) pue (YIN) LILIR[OJ 90UJUSG MOTIASY SIAOJN 9} 0]
syndino 10poous Uo SIoYIsse[d d13s130] Jo Aoemooe Aq pomseawt Ajpenb uoryejussordol 1opoous o) 310dor oA\ *(RT(g ‘90 puR URIRMSIZOT)
SI0300A PSNOYT-OMP) U0 poseq SPOYIoW JUISN POUIRI) SIOPOIUD JUDLINISI SNdHOD)MOOET 0T [[€ 10F suorjeoyrads juowitodxy 9y o[qR],

211

%I8T9 | %S6'ES | %SV'E9 | %9LFS |00TT| S000°0 | 00F pue. /, (c=n"7 — (1=1)7
%SG LL | %L90L | %99°LL | %ET0L |00ZT| S000°0 | 00F pueu , (c=9"7 — (6L00=1)>7
%80°C9 | %86'ES | %06TF9 | %9S°SS |002T| S0000 | 00F% pued , (e=1"7-60 (z=0)"7-1°0 (1=2)>7
%LG8L | %TR'69 | %ST8L | %ES0L |00TT| S0000 | 00F pued , (e=1"7-60 (e=0)*7-10 | (cL00=1)>F
%IL'E9 | %IT'CS | %GTT9 | %06¥S |00TT| S0000 | 00F pueJ , (t=1"7-80 (z=2)°7 - 20 (1=2)>7
%V0'8L | %S6'0L | %EV6L | %V6'IL |00TT| S0000 | 00F pued /, (z=1"7-80 (z=0)7-70 | (5L00=2)>T
%Vee9 | %0€'SS | %IEF9 | %9698 |00TT| S000°0 | 00F pued , (e=1"7- L0 (z=0)°7 - €0 (1=2)>7
%CTLL | %SSTL | %9V6L | %66TL |00TT| S0000 | 00% pued , (e=1"7- L0 (z=0)7-¢0 | (5L00=2)>T
%V869 | %T6'LE | %SGSLY | %SLLS |002T| S0000 | 00 pued , (e=1"7-90 (z=0)"7 - 70 (1=2)>7
%VeT8 | %TEeTL | %T908 | %E€TEL |00TT| 0000 | 00F pued , (c=1)"7-90 (z=0)*7-70 | (gL00=2)>T
%T0'EL | %¥9E9 | %L6TL | %9099 |00TT| S0000 | 00F pueJ /, (t=1"7-90 (z=0)%7 - ¢°0 (1=2)>7
%99'P8 | YISTL | %I9TS | %SP'FL |002T| S0000 | 00F% pue. /, (e=1"7-50 (z=m)°7-c0 | (qL00=2)7
%E6'GL | %8889 | %EV'8L | %ES0L |00TT| 0000 | 00F pued , (e=1"7 -0 (z=1)°7 - 9°0 (1=2)>7
%ST'IS | %IVTL | %ETe8 | %90°¢L |002T| S0000 | 00F% pued , (e=1"7 - ¥0 (z=0)°7-90 | (cL00=2)F
%VS'SL | %99°€L | %TL8L | %6STL |00TT| S0000 | 00% pued , (e=1"7-¢0 (z=0)7 - 10 (1=2)>7
%SV IS | %09FL | %0TT8 | %L9°SL |00T| S0000 | 00F pue. , (ct=1"7-¢0 (z=0)%7-20 | (cLo0=1)7
%IE'8L | %SV'OL | %IE6L | %EETL |00TT| S0000 | 00F pueJ /, (t=1"7-20 (z=1)°7 - 80 (1=2)>7
%eeE8 | USFIL | %S0°€8 | %ST9L |00TI| S000°0 | 00F% pued , (ct=1"7 20 (c=0)°*7-80 | (5L00=1)7
%6TE9 | %10TS | %8L'EY | %9TTS |00T| S0000 | 00F% pue. , (e=1"7-10 (z=»)*7-60 (1=2)°7
%eLOL | YTV TL | %06°LL | %9TTL |00TT| S0000 | 00F% pued , (e=1"7-1°0 (z=0)°7-60 | (cL00=2)F
%6T'E9 | %LL6Y | %TIS'EY | %896F |002T| S0000 | 00F pued , — (z=n0)7 (1=1)7
%GLTL | %ET'S9 | %6EEL | %9T'69 |00TT| 0000 | 00F pued , — (z=0)%7 (cL0'0=2)°F
%VSEL | %86'T9 | %0969 | %ITe9 |00TT| S0000 | 00F pue. /, — — (e=1)7
%69 TL | %6LT9 | %90°TL | %L6'€9 |00TT| S000°0 | 00F pued /, — — (e=1)7
%e6'CL | %TH'CY | %LYOL | %E6'€9 |00TT| S0000 | 00% pued , — — (¢T1=1)7
WYETVL | %6LCY | %CTTL | %L999 |00ZT| S0000 | 00 pued , — — (1=1)%7

212

%OVCL | %ET'TL | %6TLL | %EETL |002T| S0000 | 00F pue. /, (c=1"7 - 0610 | (c=0)°T - G608°0
%8TEL | %T8EY | %EETL | %LFE9 |00TT| S000°0 | 00F pueu /, (e=1)"7 - 0610 | (1=0)%7 - 66080
%STLL | %SRO0L | %CLLL | %TETL |00TT| S000°0 | 00 pue. , (e=1)"7-981°0 | (¢=0)°7 -¥18°0
%8TEL | %TYEY | UVLTL | %EV'EY |00TT| S000°0 | 00 pue. , (e=1"7-981°0 | (1=0)°7 - ¥18°0
%OV'SL | %0T'0L | %TISSL | %1969 |00TT| 0000 | 00F pueJ , (c=9)"7 -818T°0 | (z=10)°7 - 33180
WPETL | %OL'CY | %9ETL | %LT'99 |00GT| S0000 | 00F pueu s, (e=4)"7-8181°0 | (1=0)°7 - 28180
%09TVL | %FS69 | %TYEL | %EE69 |00TT| S0000 | 00F pued / (c=1"7 -8LLT0 | (z=10)°T - 5GT80
%VSeL | %S8'L9 | %ET'GL | %EL99 |00TT| S0000 | 00F% pued , (e=1)"7 -8LLT0 | (1=0)%T - Gte80
%6VTL | %S6'L9 | %9GEL | %S9L9 |00TT| S0000 | 00 pue. , (6=1"7 - 66L1°0 | (c=0)°T - 19580
%BLOVL | %T899 | %LTGL | %169 |00TT| S000°0 | 00O pue. , (6=1"7 - 65L1°0 | (1=0)°T - 19580
%STLL | %9LT9 | %EeEL | %PT99 |00TT| 0000 | 00F pue. , (e=1)"7 - 20L1°0 | (z=10)°7 - 86280
%ISEL | %6TLI | %89TL | %8€L9 |00GT| S0000 | 00F pue. s, (e=1"7 -20L1T0 | (1=0)°T - 86280
%6TE9 | %EE9S | U6FF9 | %SEFS |008T| S0000 | 00F% pue. /, (6=9"7 - 2910 | (z=0)°7-€£80
%BITL | %S6'L9 | %60EL | %6999 |00TT| 0000 | 00F pued , (e=1)"7 - 29910 | (z=10)°7 - £€€8°0
%ET'CL | %0989 | %L09L | %ZF'89 |00TT| 0000 | 00F pue. , (e=1)"7 - 29910 | (1=0)°7 - €££8°0
%TLLY | BIS6S | %TS99 | %08'6S |00TT| S000°0 | 00F pue. , (6=1"7 - 6¥1°0 | (c=0)°T - 1,580
%69 TL | %OTF9 | %ILTL | %0OLF9 |00TT| S0000 | 00F pued s, (L=1)"7-621°0 | (6=0)°T-GL80
%6Y'EY | %IS6F | %S6'€Y | %EE0S |00TT| 0000 | 00F pue. , (c=9"7-ce10 | (2=0)°7-6L8°0
%6Y'EY | %I86Y | %I8EY | %FT0S |00TT| 0000 | 00F pued , (e=1)"7 - 11110 | (c=0)%7 - 68880
%ICLL | %09 1L | %LS'SL | %6S°0L |00ZT| S0000 | 00F pue. , (L=9"7-T0 (6=0)*7-6°0
%608 | %ILEL | %ETTIS | %eF'eL |00TT| S0000 | 00F% pue. , (c=9)"7-10 (6=0)*7-6°0
BOV'EY | BLLEY | %I8E9 | %IL6F |00CT| S000°0 | 00F% pue. , (e=9"7-10 (6=0)*7-6°0
%6V'E | %986V | ISEY | %L96F |00ZT| S000°0 | 00F pue. , (c=1)"7 - 60600 | (z=0)°7 - 16060
%6Y'EY | %S6'6F | %ISEY | %P00S |00TT| 0000 | 00F pued /, — (e=0)*7
%6Y'EY | %0E6F | %I8EY | %TO0S |00TT| 0000 | 00F pued , — (g=»)°7
%6V'€9 | %S00 | %ISE9 | %S86F |002T| S0000 | 00F pued , — (e=0)*7

213

E]

%CeCT9 | %FT'ES | %99°€9 | %ESFS |002T| S0000 | 00F pue. , (L=1"7-90 (c=0)*7 -0
%LRGY | %OL'ES | %LEEY | %9TE€S |00TT| 0000 | 00F pued , (G=1"7-90 (c=0)*7 70
%TLLY | %ELLS | %69°€9 | %ETSS |00TT| S0000 | 00% pue. /, (e=9)"7-90 (6=0)*7 - %0
%6Y'e9 | %STVS | %LEV9 | %LTFS |002T| S0000 | 00F pue. , (e=9)"7-90 (1=0)*7 %0
BISFY | %ELLS | %06'€9 | %90°9¢ |00zT| S0000 | 00F pue. /, (L=9)"7-¢0 (6=0)*7-¢0
%6TFY | U6ECS | %IT'E9 | %6FSe | 002T| S0000 | 00F pue. s, (¢=9)"7-¢0 (c=0)*7-¢0
%OT'99 | %9L'CS | %SLT9 | %eF'SS |00TT| S0000 | 00F pued /, (e=1"7-¢0 (c=0)*7-¢0
%UYT'99 | %98TE | %OFF9 | %I19°€S |00TT| S0000 | 00F pued /, (e=1"7-¢0 (1=0)*7-¢0
%L €9 | %0T'CS | %E9'€9 | %S8T'SS |00TT| S0000 | 00% pue. /, (L=9"7-%0 (6=0)*7-9°0
%eT'T9 | %T99C | %96°€9 | %F9FS |002T| S0000 | 00F pue. , (e=9)"7-%0 (6=0)*7-9°0
%ST'RY | %6TTI9 | %GE69 | %0909 |00ZT| S0000 | 00F pue. /, (e=1"7 %0 (6=0)*7-9°0
%IT'LY | %0ECS | %E9€9 | %98FS |00ZT| S0000 | 00F pue. /, (e=1"7-%0 (1=2)*7-9°0
%09FL | %0T'L9 | %SV'9L | %6F'89 |00TT| 0000 | 00F pued , (c=1)"7 -ge€0 | (z=0)°7 - 29990
%8L89 | %E”FS | %STE9 | %TF'SS |00TT| S000°0 | 00F pued , (e=1)"7 -eeee0 | (1=0)°7 - 29990
%E809 | %0T'CC | %STT9 | %eT¥S |00TT| S0000 | 00% pue. , (L=9"7-¢0 (e=0)*7 - L0
%ET 9 | YISES | %L0T9 | %Pese |00zT| S0000 | 00F% pue. , (e=9)"7-¢0 (6=0)*7- L0
%SL'LL | %IL'EL | %E6'SL | %0S'TL | 00ZT| S0000 | 00F% pue. , (e=1"7-¢0 (6=0)*7- L0
%eS'89 | %T0'CS | %L8'E€9 | %VT¥S |00TT| S0000 | 00F pue. / (t=1)"7-€0 (1=0)*7-L0
%EY6L | USSTL | %TL08 | %09°TL |00ET| S0000 | 00F% pue. , (e=9)"7-620 | (e=0)°*7-6L0
BITOL | %IT'CS | %E9€9 | %6T'SS |00TT| S0000 | 00F pued , (e=n"7-¢cc0 | (1=0)°7-6L0
%TI9CO | %T6'LE | %06'€9 | %L9'€S |00ZT| S0000 | 00F pue. , (L=9)"7-%0 (c=0)*7 - 80
%T0V9 | %FOTS | %6T'€9 | %8S |00TT| S0000 | 00F pue. , (c=9)"7-%0 (6=0)*7-8°0
%68°6L | %SV'EL | %VE0S | %097L |00ZT| S0000 | 00F pueJ , (c=1"7-20 (c=2)°7 -8°0
%BLEOL | %FT'6S | %I¥69 | %1609 |00TT| S0000 | 00F pue. /, (t=1)"7-20 (1=0)*7-8°0
WIS LL | %8EEL | %E6'LL | %POTL |00ET| S0000 | 00F% pue. , (e=9)"7-1661°0 | (c=0)°7 - 6V08°0
%vseL | %TOTO | %6L0L | %LT'T9 |002T| S0000 | 00% pueu , (e=1)"7 - 1561°0 | (1=0)°7 - 6¥08°0

214

Pa1INo00 NeN 00gT| 20000 | 00% pue. / (c=1)"7 - 62710 | (1=0)°7 - 1.88°0
Pa1I000 NeN 002T| 20000 | 0O% pued , (e=1)"7-5¢1°0 | (1=0)%7-GL80
Pa1INI00 NeN 00ZT| 20000 | 0O% pueJ , (e=1)"7 - 11110 | (1=10)°7 - 638880
pa1Imooo ey 00ZT | €000°0 | 00F pue. , (e=9"7-10 (1=0)*7-6°0
PaIImooo Ney 00ZT | ©000°0 | 00F pue. , (6=1"7 - 60600 | (1=0)°7 - 1606°0
Po1Imooo NeN 00TT| <0000 | 00% pueJ , — (1=0)°7
%6Y'EY | %EE'9S | %ST'EY | %SSTS |00TT| 0000 | 00F pued , (L=1"7 —
%e0v9 | %F09S | %VOF9 | %S6FS |00TT| S0000 | 00 pue. /, (e=1"7 —
%TLLY | %9ELE | %697T9 | %r0'SS |00TT| S0000 | 00% pued , (e=1"7 —
%TOV9 | %S6'SC | %ETG9 | %C9FS |002T| S0000 | 00F pue. /, (L=9)"7-60 (c=0)*7-1°0
%YT'99 | %8Y'eS | %99°€9 | %ET9¢ |00zT| S0000 | 00F pue. , (c=9)"7-60 (6=0)*7-1°0
%9809 | %9T'LS | %0679 | %09FS |00TT| 0000 | 00F pueJ , (c=1"7 60 (c=2)°7-1°0
%eS'89 | %TY'9S | %EL'G9 | %09°FS |00TT| S0000 | 00F pue. / (t=1)"7-60 (1=p)*7-1°0
%OF99 | %68'ES | %ISEY | %98FS |00TT| S000°0 | 00F pued /, (L=1"7-%0 (c=0)*7-2°0
%L8'GY | %9L'CS | %LET9 | %9LFS |002T| S0000 | 00F pue. , (¢=9)"7-80 (6=0)*7 - 20
%CSTY | %S6'EC | %VEGY | %EL'€S |002T| S0000 | 00% pue. /, (e=9)"7-80 (6=0)*7 20
%IC69 | %ESTS | %VOV9 | %98'€S | 00ZT| S0000 | 00F pue. , (e=9)"7-80 (1=0)*7 %0
%L9'99 | %F09S | %LS'€9 | %95°9¢ |00zT| S0000 | 00F pue. s, (L=9)"7-L0 (c=0)*7-¢0
%ISTY | %6ECS | %I8E9 | %ET'SS |00TT| S0000 | 00F pue. /, (¢=1)"7- L0 (t=0)°7 - €0
%OLTY | %FOFS | %P8E9 | %¥9€S |00TT| S000°0 | 00F pued /, (e=1"7-L0 (e=0)°7 - €0
%T0F9 | %TV'ES | %EV'e9 | %SL¥e | 00gT| S0000 | 00F pue. , (e=9)"7-20 (1=0)*7-¢0

215

216

Appendix B

Proofs, Details, and Additional

Discussions for Chapter 3

B.1 Discussions for Section 3.2: Preliminaries on

Quasimetrics and Poisson Processes

B.1.1 Quasimetric Spaces

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (X, d), where
X is a set of points and d: X x X — [0, 00| is the quasimetric, satisfying the following

conditions:

Ve,y € X, r=y < d(xz,y) =0, (Identity of Indiscernibles)

Vr,y,z € X, d(z,y) +d(y,z) > d(z, 2). (Triangle Inequality)

Definition B.1.1 (Quasipseudometric Space). As a further generalization, we say

(X,d) is a quasipseudometric space if the Identity of Indiscernibles requirement is

217

only satisfied in one direction:

Va,y € X, r=vy = d(z,y) =0, (Identity of Indiscernibles)

Vo, y,z € X, d(z,y) +d(y,z) > d(z, 2). (Triangle Inequality)

Examples of Quasimetric Spaces

Proposition B.1.2 (Expected Hitting Time of a Markov Chain). Let random
variables (X;); be a Markov Chain with support X'. Then (X, dhitting) i & quasimetric
space, where

dhitting (S,) £ E [time to hit ¢ | start from s], (B.1)
where we define the hitting time of s starting from s to be 0.

Proof of Proposition B.1.2. Obviously dhiuing is non-negative. We then verify the fol-

lowing quasimetric space properties:

e Identity of Indiscernibles. By definition, we have, Vx,y € X, x # vy,

dhitting(xax) =0 (BQ)

dhitting (T, y) > 1. (B.3)

e Triangle Inequality. For any x,y, 2z € X', we have

dhitting (T, ¥) + dhitting (¥, 2) = E [time to hit y then hit z | start from z] (B.4)

> E [time to hit z | start from z] (B.5)
= dhitting(xa Z) (B6)
Hence, (X, dhiting) 1s a quasimetric space. O

Proposition B.1.3 (Conditional Shannon Entropy). Let X be the set of random
variables (of some probability space). Then (X,dy) is a quasipseudometric space,
where

dy(X,Y) 2 H(Y | X). (B.7)

218

If for all distinct (X,Y) € X x X, X can not be written as (almost surely) a deter-

ministic function of Y, then (X, dy) is a quasimetric space.

Proof of Proposition B.1.3. Obviously dy is non-negative. We then verify the follow-

ing quasipseudometric space properties:

e Identity of Indiscernibles. By definition, we have, VXY € X,

dp(X,X)=H(X | X)=0 (B.8)
dy(Y,X) = H(Y | X) >0, (B.9)

where < is = iff Y is a (almost surely) deterministic function of X.

e Triangle Inequality. For any X,Y, Z € X, we have

dy(X,Y)+dy(Y,2) = HY | X)+ H(Z|Y) (B.10)
>H(Y | X)+ H(Z | XY) (B.11)
—H(YZ|X) (B.12)
> H(Z | X) (B.13)
= dy(X, 2). (B.14)

Hence, (X, dy) is a quasipseudometric space, and a quasimetric space when the last

condition is satisfied. O

Conditional Kolmogorov Complexity. From algorithmic information theory, the
conditional Kolmogorov complexity K (y |) also similarly measures “the bits needed
to create y given x as input” (Kolmogorov, 1963). It is also almost a quasimetric,
but the exact definition affects some constant/log terms that may make the quasi-
metric constraints non-exact. For instance, when defined with the prefix-free version,
conditional Kolmogorov complexity is always strictly positive, even for K(z | x) > 0
(Li et al., 2008). One may remedy this with a definition using a universal Turing

machine (UTM) that simply outputs the input on empty program. But to make

219

triangle inequality work, one needs to reason about how the input and output parts
work on the tape(s) of the UTM. Nonetheless, regardless of the definition details,
conditional Kolmogorov complexity do satisfy a triangle inequality up to log terms
(Grunwald and Vitanyi, 2004). So intuitively, it behaves roughly like a quasimetric

defined on the space of binary strings.

Optimal Goal-Reaching Plan Costs in Markov Decision Processes (MDPs)
We define MDPs in the standard manner: M = (S, A, R, P,7) (Puterman, 1994),
where S is the state space, A is the action space, R: S x A — R is the reward function,
P:SxA— A(S) is the transition function (where A(S) is the set of all distributions

over §), and v € (0, 1) is the discount factor.

We define II as the collection of all stationary policies 7: & — A(A) on M. For a

particular policy 7 € I, it induces random trajectories:

e Trajectory starting from state s € S is the random variable

§x(s) = (s1,a1,71,82,a9,72,...), (B.15)
distributed as
s51=5 (B.16)
a; ~ m(si), Vi>1 (B.17)
Sit1 ™~ p(Si, CLZ'), Vi > 1. (B18)

e Trajectory starting from state-action pair (s,a) € S x A is the random variable

Ex(s,a) = (s1,a1,71,82,a2,72, ...), (B.19)

220

distributed as

1= 5 (B.20)
a; =a (B.21)
a; ~ m(s;), Vi > 2 (B.22)
Siv1 ~ P(si, a;), Vi > 1. (B.23)

Proposition B.1.4 (Optimal Goal-Reaching Plan Costs in MDPs). Consider
an MDP M = (S, A, R, P,v). WLOG, assume that R: § x A — (—o00,0] has only
non-positive rewards (i.e., negated costs). Let X = SU(S x A). Then (X, dgym) and

(X,d,) are quasipseudometric spaces, where

dsum (7,)
= milr%E [total costs from z to y under 7| (B.24)
S
(
minrent Bsy a1,)=t [= 2207t Logsidiey | ify=s'es
—_———
= { not reached s’ yet goal is a state

minﬂen E(817a17T17~-):§w($) [- Zt Tt 1(5/7a/)¢{(5i7ai)}ie[t—1]] if Y= (5/7 a/) €S x Av

-

TV
not reached s’ and performed a’ yet goal is a state-action pair

(B.25)

\

and

d'y (.T, y> L IOgW Tgﬁ(E [rytotal costs from x to y under w} (B26)

is defined similarly.
If the reward function is always negative, (X, dsym) and (X,d,) are quasimetric

spaces.

Proof of Proposition B.1.4. Obviously both ds,m and d, are non-negative, and satisfy
Identity of Indiscernibles (for quasipseudometric spaces). For triangle inequality, note

that for each y, we can instead consider alternative MDPs:
o Ify =5 € S, modify the original MDP to make s’ a sink state, where performing

221

any action yields 0 reward (i.e., 0 cost);

o If y=(s,d") €S x A, modify the original MDP such that performing action @’
in state s’ surely transitions to a new sink state, where performing any action

yields 0 reward (i.e., 0 cost).

Obviously, both are Markovian. Furthermore, they are Stochastic Shortest Path
problems with no negative costs (Guillot and Stauffer, 2020), implying that there are
Markovian (i.e., stationary) optimal policies (respectively w.r.t. either minimizing

total cost) " Thus optimizing over the set

expected total cost or maximizing expected ~
of stationary policies, II, gives the optimal quantity over all possible policies, including
concatenation of two stationary policies. Thus the triangle inequality is satisfied by
both.

Hence, (X, dsym) and (X, d,) are quasipseudometric spaces.

Finally, if the reward function is always negative, © # y = dsum(z,y) >

0 and d,(x,y) > 0, so (X, dsym) and (X, d,) are quasimetric spaces. O
Remark B.1.5. We make a couple remarks:

e Any MDP with a bounded reward function can be modified to have only non-

positive rewards by subtracting the maximum reward (or larger);

e We have
deum (s, (5,a)) = d,(s, (s,a)) = —=R(s, a). (B.27)

e When the dynamics is deterministic, dgym = d, ¥y € (0, 1).

e Unless y is reachable from x with probability 1 under some policy, dsym(z,y) =

Q.

e Unless y is unreachable from x with probability 1 under all policies, dgym(z,y) <

oo. Therefore, it is often favorable to consider d, types.

e In certain MDP formulations, the reward is stochastic and/or dependent on the

reached next state. The above definitions readily extend to those cases.

222

o ~H((59)9) i very similar to Q-functions except that Q-function applies discount
based on time, and y*((5®:¥) applies discount based on costs. We note that a

Q-learning-like recurrence can also be found for y%(5:2).9),

If the cost is constant in the sense for some fixed ¢ < 0, R(s,a) = ¢, V(s,a) €
S x A, then time and cost are equivalent up to a scale. Therefore, y%((s:4))
coincides with the optimal Q-functions for the MDPs described in proof, and

4 () coincides with the optimal value functions for the respective MDPs.

Quasimetric Treewidth and Graph Treewidth

Definition 3.2.2 (Treewidth of Quasimetric Spaces (Mémoli et al., 2018)). Consider
representations of a quasimetric space M as shortest-path distances on a positively-
weighted directed graph. Treewidth of M is the minimum over all such graphs’
treewidths. (Recall that the treewidth of a graph (after replacing directed edges with

undirected ones) is a measure of its complexity.)

Graph treewidth is a standard complexity measure of how “similar” a graph is to a
tree (Robertson and Seymour, 1984). Informally speaking, if a graph has low treewidth,
we can represent it as a tree, preserving all connected paths between vertices, except
that in each tree node, we store a small number of vertices (from the original graph)
rather than just 1.

Graph treewidth is widely used by the Theoretical Computer Science and Graph
Theory communities, since many NP problems are solvable in polynomial time for

graphs with bounded treewidth (Bertele and Brioschi, 1973).

B.1.2 Poisson Processes

Definition 3.2.3 (Poisson Process). For nonatomic measure p on set A, a Poisson
process on A with mean measure p is a random countable subset P C A (i.e., the
random events / points) such that

e for any disjoint measurable subsets Aq,..., A, of A, the random variables

N(Ay),...,N(A,) are independent, where N(B) = #{P N B} is the number

223

of points of P in B, and

e N(B) has the Poisson distribution with mean u(B), denoted as Pois(u(B)).

Poisson processes are usually used to model events that randomly happens “with
no clear pattern”; e.g., visible stars in a patch of the sky, arrival times of Internet
packages to a data center. These events may randomly happen all over the sky / time.
To an extent, we can say that their characteristic feature is a property of statistical
independence (Kingman, 2005).

To understand this, imagine raindrops hitting the windshield of a car. Suppose that
we already know that the rain is heavy, knowing the exact pattern of the raindrops
hitting on the left side of the windshield tells you little about the hitting pattern on
the right side. Then, we may assume that, as long as we look at regions that are
disjoint on the windshield, the number of raindrops in each region are independent.

This is the fundamental motivation of Poisson processes. In a sense, from this

characterization, Poisson processes are inevitable (see Sec. 1.4 of (Kingman, 2005)).

Poisson Race Probability P [Pois(u1) < Pois(u2)] and Its Gradient Formulas

In Fact 3.2.4 we made several remarks on the Poisson race probability, i.e., for
independent X ~ Pois(u), Y ~ Pois(us), the quantity P[X < Y]. In this section,
we detailedly describe how we arrived at those conclusions, and provide the exact

gradient formulas for differentiating P[X < Y] w.r.t. p; and po.

From Skellam distribution CDF to Non-Central Y? distribution CDF. Dis-
tribution of the difference of two independent Poisson random variables is called the
Skellam distribution (Skellam, 1946), with its parameter being the rate of the two
Poissons. That is, X — Y ~ Skellam(j1, p2). Therefore, P[X < Y] is essentially the
cumulative distribution function (CDF) of this Skellam at 0. In Eq. (4) of (Johnson,
1959), a connection is made between the CDF of Skellam(yy, po) distribution, and
the CDF of a non-central y? distribution (which is a non-centered generalization of

x? distribution) with two parameters k > 0 degree(s) of freedom and non-centrality

224

parameter A\ > 0): for integer n > 0,

P [Skellam (g1, po) > n] = P[NonCentralx*(2n , 2us) < 24u1], (B.28)

degree(s) of freedom non-centrality parameter

which can be evaluated using statistical computing packages such as SciPy (Virtanen

et al., 2020) and CDFLIB (Burkardt, 2021; Brown et al., 1994).

Marcum-Q-Function and gradient formulas. To differentiate through Equa-
tion (B.28), we consider representing the non-central x* CDF as a Marcum-Q-function
(Marcum, 1950). One definition of the Marcum-Q-function Qp: R x R — R in

statistics is

a

Qur(a,b) = /booa: <£>M_1 exp (—xQ ;— a2) Iy (ax) da, (B.29)

where I;_; is the modified Bessel function of order M — 1. (When M is non-integer,
we refer readers to (Brychkov, 2012; Marcum, 1950) for definitions, which are not

relevant to the discussion below.) When used in CDF of non-central x?, we have
P [NonCentraly?(k,\) < z] =1 — Qg(\/x, V). (B.30)

Combining with Equation (B.28), and using the symmetry Skellam (i1, f12) 2 —Skellam (1o, f11),

we have, for integer n,

P[X <Y 4 n| = P [Skellam (1, p2) < nj (B.31)

P [NonCentraly?(—2n, 2p1) < 2us] ifn<0
_ (B.32)

1 — P [NonCentralx?(2(n + 1), 2us) < 2p1] if n >0

_ 1@V, V2) i <0 (B.33)

\Qn+1(\/2ﬂ27\/2/ﬁl) ifn>0.

225

Prior work (Brychkov, 2012) provides several derivative formula for the Marcum-Q-

Function:

e For n < 0, we have

ALY <Y] = o (1 QB vEm)) (B30
- Q*n(\/2_:ulv \/%) - Q*ﬂﬂ*l(\/ﬂ’ \/%)

(Eq. (16) of (Brychkov, 2012))

V|3

() o

M1
(Eq. (2) of (Brychkov, 2012))

_ (&)_ WV 12 /i), (B.35)

H1

where L(,e)(:p) £ ¢~ (x) is the exponentially-scaled version of I, that comput-
ing libraries often provide due to its superior numerical precision (e.g., SciPy

(Virtanen et al., 2020)),

ailp X <Y +n]= % (1 — Q-n(v/2p1, \/272)) (B.36)

n+1

0

(Eq. (19) of (Brychkov, 2012))

n+1

— (L) T e eymm), (B

H1

e For n > 0, we have

0
WIP (X <Y +n]= —Qn+1 V202, 1/ 241) (B.38)
1
- (“—) 0 (2)
M2
(Eq. (19) of (Brychkov, 2012))
_ (“_) WO fingim), (B.39)
25)

226

and,

0
8_IMQP [X <Y + n Qn+1 \/ 2[,62, \ 2,[1/1 (B40)
= Qn+2 V242, \/ 2411) — Qn+1(\/ 212,/ 2411)

(Eq. (16) of (Brychkov, 2012))

n+1

2
— (&) e—(u1+u2)]n+1(2\/m)

12%)
(Eq. (2) of (Brychkov, 2012))

n+1

:(ﬂ> ’ e~ WI=VE 119 (9 /). (B.41)

2

Setting n = 0 gives the proper forward and backward formulas for P[X <Y].

B.2 Proofs, Discussions and Additional Results for
Section 3.4: Theoretical Analysis of Various Learn-
ing Algorithms

Assumptions. Recall that we assumed a quasimetric space, which is stronger than
a quasipseudometric space (Definition B.1.1), with finite distances. These are rather
mild assumptions, since any quasipseudometric with infinities can always be modified
to obey these assumptions by (1) adding a small metric (e.g., d.(7,y) = €l,4, with
small € > 0) and (2) capping the infinite distances to a large value higher than any

finite distance.

Worst-case analysis. In this work we focus on the worst-case scenario, as is
common in standard (quasi)metric embedding analyses (Bourgain, 1985; Johnson and
Lindenstrauss, 1984; Indyk, 2001; Mémoli et al., 2018). Such results are important
because embeddings are often used as heuristics in downstream tasks (e.g., planning)
which are sensitive to any error. While our negative result readily extends to the

average-case scenario (since the error (distortion or violation) is arbitrary), we leave a

227

thorough average-case analysis as future work.

Data-independent bounds. = We analyze possible data-independent bounds for
various algorithms. In this sense, the positive result for PQEs (Theorem B.3.4) is
really strong, showing good guarantees regardless data quasimetric. The negative
result (Theorem 3.4.6) is also revealing, indicating that a family of algorithms should
probably not be used, unless we know something more about data. Data-independent
bounds are often of great interest in machine learning (e.g., concepts of VC-dimension
(Vapnik and Chervonenkis, 2015) and PAC learning (Valiant, 1984)). An important
future work is to explore data-dependent results, possibly via defining a quasimetric
complexity metric that is both friendly for machine learning analysis, and connects

well with combinatorics measures such as quasimetric treewidth.

Violation and distortion metrics. The optimal violation has value 1. Specifically,
itis 1iff d is a quasimetric on X (assuming non-negativity). Distortion (over training
set) and violation together quantify how well d learns a quasimetric consistent with
the training data. A predictor can fit training data well (low distortion), but ignores
basic quasimetric constraints on heldout data (high violation). Conversely, a predictor
can perfectly obey the training data constraints (low violation), but doesn’t actually
fit training data well (high distortion). Indeed, (assuming non-negativity and Identity
of Indiscernibles), perfect distortion (value 1) and violation (value 1) imply that d is a

quasimetric consistent with training data.

Relation with classical in-distribution generalization studies. Classical gen-
eralization studies the prediction error over the underlying data distribution, and
often involves complexity of the hypothesis class and/or training data (Vapnik and
Chervonenkis, 2015; McAllester, 1999). Our focus on quasimetric constraints violation
is, in fact, not an orthogonal problem, but potentially a core part of in-distribution
generalization for this setting. Here, the underlying distribution is supported on all
pairs of X x X. Indeed, if a learning algorithm has large distortion, it must attain

large prediction error on S C X x AX'; if it has large violation, it must violates the

228

quasimetric constraints and necessarily admits bad prediction error on some pairs
(whose true distances obey the quasimetric constraints). Theorem 3.4.3 (proved below)
formalizes this idea, where we characterize generalization with the distortion over all

possible pairs in X x X.

B.2.1 Theorem 3.4.3: Distortion and Violation Lower-Bound

Generalization Error

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-
ror). For non-negative d, dis(d) > max(disg(d), V' vio(d)), where dis(d) captures gen-

eralization over the entire X’ space.

Proof

Proof of Theorem 3.4.3. 1t is obvious that

A A

dis(d) > disg(d). (B.42)

Therefore, it remains to show that dis(d) > 1/vio(d).

A

WLOG, say vio(d) > 1. Otherwise, the statement is trivially true.

By the definition of violation (see Definition 3.4.2), we have, for some z,y,z € X,

with d(z, z) > 0,
d@.2) o). B.43
d(z,y) +d(y, 2) o) (B43)

A ~

If d(x,y) + d(y, z) = 0, then we must have one of the following two cases:
o If d(z,y) > 0 or d(y, z) > 0, the statement is true because dis(d) = co.

o If d(z,y) = d(y,z) = 0, then d(z,z) = 0 and the statement is true since

-3 d T,z
dis(d) > dEI’Zg = 00.

229

It is sufficient to prove the case that d(z,y) + d(y, z) > 0. We can derive

Qo

vio(d)

— vio(d) ()) (B.44)
(

> d(z,y) +d(y, 2)) (B.45)

dis(
V|o(

>

d(z, 2). (B.46)

If d(z, z) = 0, then dis(d) = oo and the statement is trivially true.
If d(z, z) > 0, above Equation (B.46) implies
d(z,z) _ vio(d -

) s)
i) 2 gy @) 2 Vvie(d): (B.47)

dis(d) >

Combining Equations (B.42) and (B.47) gives the desired statement.

B.2.2 Lemma 3.4.5: Examples of OrthEquiv Algorithms

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). k-nearest-neighbor with
Euclidean distance, dot-product kernel ridge regression (including min-norm linear
regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Recall the definition of Equivariant Learning Transforms.

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set D = {(z;, v:) },
where z; € Z are inputs and y; €) are targets, a learning algorithm Alg produces a
function Alg(D): Z — Y such that Alg(D)(2’) is the function’s prediction on sample
2'. Consider T a set of transformations Z — Z. Alg is equivariant to 7 iff for all trans-
form T € T, training set D, Alg(D) = Alg(TD)oT, where TD = {(Tz,y): (z,y) € D}

is the training set with transformed inputs.

Proof
Proof of Lemma 3.4.5. We consider the three algorithms individually:

230

e k-nearest neighbor with Euclidean distance.

It is evident that if a learning algorithm only depend on pairwise dot prod-
ucts (or distances), it is equivariant to orthogonal transforms, which preserve
dot products (and distances). k-nearest-neighbor with Euclidean distance only

depends on pairwise distances, which can be written in terms of dot products:
||x—y||§ —alety'y—22Ty. (B.48)

Therefore, it is equivariant to orthogonal transforms.

e Dot-product kernel ridge regression.

Since orthogonal transforms preservers dot-products, dot-product kernel ridge

regression is equivariant to them.

As two specific examples, let’s look at linear regression and NTK for fully-

connected MLPs.

— Min-norm least-squares linear regression.

Recall that the solution to min-norm least-squares linear regression Ax = b
is given by Moore-Penrose pseudo-inverse z = ATb. For any matrix A €
R™ ™ with SVD UXV* = A, and T € O(n) (where O(n) is the orthogonal

group in dimension n), we have
(ATHYT = (USV*TTT = TVSTU* = TAT, (B.49)

where we used 7% = T for T € O(n). The solution for the transformed

data ATT and b is thus

(ATT)"b = TA™D. (B.50)

231

Thus, for any new data point & € R™ and its transformed version Tz € R",

(T2) (AT b =2"T'"TAT = 3AT. (B.51)
A ~~ d S~~~
transformed problem prediction original problem prediction

Hence, min-norm least-squares linear regression is equivariant to orthogo-
nal transforms.

MLP trained with squared loss in NTK regime.

We first recall the NTK recursive formula from (Jacot et al., 2018).
Denote the NTK for a MLP with L layers with the scalar kernel ©() : R% x
R? — R. Let 3 > 0 be the (fixed) parameter for the bias strength in the
network model, and o be the activation function. Given z,z € R?, it can

be recursively defined as following. For h € [L],
O (z,2) £ 0PV (z,)W (z, 2) + 2 (z, 2), (B.52)
where

1
»O(z,2) = axTz + 3%, (B.53)

YD (g, z) StD(g, 2
AP (g 2) = () (z.2) , (B.54)
YD (z,2) BOD(z,2)

Z(h) (I’, Z) =cC-]E(u7U)NN(O7A(}L71)) [O'(U)O'('U)] + 52, <B55)

SM(2,2) = ¢ Euyonoan-v [6(w)a)], (B.56)

for some constant c.

It is evident from the recursive formula, that ©")(z, z) only depends on
27z, 27z and 27z, Therefore, the NTK is invariant to orthogonal trans-
forms.

Furthermore, training an MLP in NTK regime is the same as kernel regres-

sion with the NTK (Jacot et al., 2018), which has a unique solution only

depending on the kernel matrix on training set, denoted as Ky, € R"*",

232

where n is the training set size. Specifically, for training data {(x;, y;) }icn),

the solution f{rx: R — R can be written as

fl;kITK(x) = <®(L) (ZE, 5(71) G(L) (l‘7 '1:2) e @(L) (l’, xn)) Kt_raliny7 (B57)

where y = (y1 Yy ... ?Jn) is the vector of training labels.

Consider any orthogonal transform 7' € O(d), and the NTK regression
trained on the transformed data {(T'2;,¥;)}icjn). Denote the solution as
itk R = R, As we have shown, K L is invariant to such transforms,

train

and remains the same. Therefore,

fI:ITK,T(Tx) = <@(L) (T377T371) @(L)(T%Tﬁ@) @(L)(T%Tl'n)) Kt_raliny
(B.58)
_ (@(L)(x’xl) O (2, 25) - G(L)(:U,xn)> K:Ly (B.59)
= Sk (@). (B.60)

Hence, MLPs trained (with squared loss) in NTK regime is equivariant to

orthogonal transforms.

Furthermore, we note that there are many variants of MLP NTK formulas
depending on details such as the particular initialization scheme and bias
settings. However, they usually only lead to slight changes that do not
affect our results. For example, while the above recursive NTK formula
are derived assuming that the bias terms are initialized with a normal
distribution (Jacot et al., 2018), the formulas for initializing bias as zeros
(Geifman et al., 2020) does not affect the dependency only on dot product,

and thus our results still hold true.

These cases conclude the proof. O

233

(& ' ? 1

vio(d) > = K > vio(d) > K d(y’z)A
d(z,y) +d(y,z) — disg(d)(diss(d) + d(y, 2)) d(y, w) + d(z) 2-disg(d)
Training (—) : d(z,2) =¢, d(w,z) =1, Training (—>) : d(z,2) =¢, d(w,z) =1,
d(ey) =1, dly,uw) =1 A y) =1, dly,w)=1.
Test (--») : d(y,z) =7 Test (--») : d(y,z) ="

Figure B-1: Two training sets pose incompatible constraints (-) for the test pair distance
d(y,z). With one-hot features, an orthogonal transform can exchange (x,y) <> (*,v') and
(x,w) <> (*,w"), leaving the test pair (y,z) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (y, z). For appropriate ¢, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

B.2.3 Theorem 3.4.6: Failure of OrthEquiv Algorithms

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (f,), be an arbitrary se-
quence of large values. There is an infinite sequence of quasimetric spaces ((X,, dn))n
with |X,| = n, A, C R” such that, over a random training set S of size m, any

OrthEquiv algorithm outputs a predictor d that
o d fails non-negativity, or

e max(disg(d),vio(d)) > f, (i.e., d approximates training S badly or is far from

a quasimetric),

with probability 1/2 — o(1), as long as S does not contain almost all of the pairs
1 —m/n? = w(n~'/3), and does not only include few pairs m/n? = w(n=/2).

Recall that the little-Omega notation means f = w(g) <= g = o(f).

Proof

Proof strategy. In our proof below, we will extend the construction discussed in
Section 3.4.2 to large quasimetric spaces (reproduced here as Figure B-1). To do so,

we

234

1. Construct large quasimetric spaces containing many copies of the (potentially
failing) structure in Figure B-1, where we can consider training sets of certain

properties such that

e we can pair up such training sets,
e an algorithm equivariant to orthogonal transforms must fail on one of them,

e for each pair, the two training sets has equal probability of being sampled;

Then, it remains to show that with probability 1 —o(1) we end up with a training

set of such properties.

2. Consider sampling training set as independently collecting each pair with a
certain probability p, and carefully analyze the conditions to sample a training

set with the special properties with high probability 1 — o(1).

3. Extend to fixed-size training sets and show that, under similar conditions, we

sample a training set with the special properties with high probability 1 — o(1).

In the discussion below and the proof, we will freely speak of infinite distances
between two elements of X', but really mean a very large value (possibly finite). This
allows us to make the argument clearer and less verbose. Therefore, we are not
restricting the applicable settings of Theorem 3.4.6 to quasimetrics with (or without)
infinite distances.

In Section 3.4.2, we showed how orthogonal-transform-equivariant algorithms can
not predict d(y,z) differently for the two particular quasimetric spaces and their
training sets shown in Figure B-1.

But are these the only bad training sets? Before the proof, let us consider what kinds
of training sets are bad for these two quasimetric spaces. Consider the quasimetrics
diefe and dyighy over X 2 {2,9,9, 2, w,w'}, with distances as shown in the left and
right parts of Figure B-1, where we assume that the unlabeled pairs have infinite
distances except in the left pattern d(z,w’) < 2, and in the both patterns d(y, z) has
some appropriate value consistent with the respective triangle inequality.

Specifically, we ask:

235

e For what training sets Siere C X' X X can we interchange y <+ 3’ and w <> w’ on

2nd input to obtain a valid training set for dyignt, regardless of ¢?

e For what training sets Syighy C X X X can we interchange y <+ ¢’ and w < v/’

on 2nd input to obtain a valid training set for dje, regardless of ¢?

Note that if Sies (0r Syignt) satisfies its condition, the predictor d from an algorithm
equivariant to orthogonal transforms must (1) predict d(y, z) identically and (2) attain
the same training set distortion on it and its transformed training set. As we will see
in the proof for Theorem 3.4.6, this implies large distortion or violation for appropriate
c.

Intuitively, all we need is that the transformed data do not break quasimetric
constraints. However, its conditions are actually nontrivial as we want to set ¢ to

arbitrary:

e We can’t have (z,w) € Sygn because it would be transformed into (x,w’) which
has diee(2,w") < 2. Then dyigne(z, w) < 2 and then restricts the possible values
of ¢ due to triangle inequality with dyignt(w, z) = 1. For similar reasons, we can’t
have (x,w’) € Sien. In fact, we can’t have a path of finite total distance from =

to w (or w') in Syight (O Sheft)-

e We can not have (y',y') € S() (which has distance 0), which would get trans-
formed into (y',y) with distance 0, which (on the other pattern) would restrict
the possible values of ¢ due to triangle inequality. For similar reasons (w’, w'),

and cycles containing ¢y’ or w’ with finite total distance, should be avoided.

e For the theoretical analysis, we assumed that the truth d is a quasimetric rather
than just being a quasipseudometric. The difference is that quasipseudometric
additionally allows two distinct elements to have 0 distance. This assumptions

allows us to freely talk about distance ratios for defining distortion and violation.

For this particular reason, we can’t allow (y,v), (v, y), (w,w’), (W', w), (y,y)
or (w,w), as they break this assumption. However, with metrics more friendly

to zero distances (than distortion and violation, which are based on distance

236

ratios), it might be possible to allow them and obtain better bounds in the

second-moment argument below in the proof for Theorem 3.4.6.

With these understandings of the pattern shown in Figure B-1, we are ready to

discuss the constructed quasimetric space and training sets.

Proof of Theorem 3.4.6. Our proof follows the outline listed above.

1. Construct large quasimetric spaces containing many copies of the

(potentially failing) structure in Figure B-1.

For any n > 0, consider the following quasimetric space (X,,, d,,) of size n, with

one-hot features. WLOG, assume n = 12k is a multiple of 12. If it is not, set

at most 11 elements to have infinite distance with every other node. This won’t

affect the asymptotics. Let the n = 12k elements of the space be

Ieft Ieft right right left left right
X, ={x} Lt s, wiE L w
left left , right right /left lleft Iright
YU Y Y LW L w S L w
/left Nleft Iright /right
Y - Yr Yky1 5 Yo 1 R1s- -5 Rk, Rht1y -+

with quasimetric distances, Vi, 7,

nx

Q@ 2) = da (o, 2)) =

(left

rlght _
, 2 w®"z) =1

left , left
(i ’y/

)

) =

) = dn
(", wi*")

)

)

)

dhn(
dn(
d (Irlght /rlght) -1
dn (y;

rlght rlght) -1

n

d (Ieft /Ieft

(left

) Zj

(rlght7 z;

(B.61)

where subscripts are colored to better show when they are the same (or dif-

ferent), unlisted distances are infinite (except that d,(u,u)

237

= 0,Vu € X).

Essentially, we equally divide the 12k nodes into 6 “types”, {z,y,w, z,w',y'},
corresponding to the 6 nodes from Figure B-1, where each type has half of
its nodes corresponding to the left pattern (of Figure B-1), and the other half
corresponding to the right pattern, except for the z types.

Furthermore,

e Among the left-pattern nodes, each set with the same subscript are bundled

only has finite distance to gt

left
)

together in the sense that z which only

has finite distance to w/®® (instead of other g’

/lefts
s or wp’s). However,

since distance to/from y'*" and w!*" are infinite anyways, we can pair
left left Neft rleft left
('xj Y W, yj W, Zh) <B69)

for any 7, j,/, h, to obtain a left pattern.

e Among the right-pattern nodes, each set with the same subscript are bun-

right

only has finite distance to y/"&"

K3

dled together in the sense that x , and
right

right
Y

J

(instead of other ¢/ "&"

which only has finite distance to w ;

S or

ight
wzg 7S). However, since are distances are infinite anyways, we can pair

right /right right right Iright
(" y; YT W, w) (B.70)

for any 7, j,/, h, to obtain a right pattern.

We can see that (X, d) indeed satisfies all quasimetric space requirements (Def-
inition 3.2.1), including triangle inequalities (e.g., by, for each (a,b) with finite

distance d,(a,b) < 0o, enumerating finite-length paths from a to b).

Now consider the sampled training set .S.

238

e We say S is bad on a left pattern specified by e, Jieft, Lot Riefe, if

SD {(I[T:;E hleft)’ ("L‘Iziff:7yif;) (y!i: i:fftt)v (wleft7 Zhleft)} <B71)

0= S 0L 2ne)s (Wi wine)s (wrf W), (s vigs), (i widd),

fi fi fi fi fi fi fi fi fi fi
(;Ieeft ;::ﬁt) (yiiff’y;:&t) (Iet ;:eeftt) (yglljftt’yileeff) (ireeftt’ N t)}

(B.72)

e We say S is bad on a right pattern specified by #ight, Jright s Nright, if

S0 (@ 20, (50, (S), (Y, 21,0} (BT3)

anht Zright 7 7 Tright y]rlght 7 7 Jright /7 Jright

right right right right right right rright
@ S ﬂ {(yjnght h”ght) (y]rlght yjright >7 (wjright ? wjright)7 (yjright ? yiright)7

(w/rlght,w/right),(right w/right) (right /right>’(right w/right>

iright) jright anght iright jright ’ ’
rright right Iright right
<yLr|ght ’ y]rlght) (w ’ wjright) } (B74)

Most importantly,

e If S is bad on a left pattern specified by i, Jieft, lert, Nieft, consider the

orthogonal transform that interchanges ¥/ « ¢/ and w*" < w/*" on

2nd input. In S, the possible transformed pairs are

Aty =1 — d) =1, (known in)

e wl™ =1 — dye w) =1, (known in S)
d(u, y!fi:) =00 — d(u, y;'lefit) = 00,

(poissble in S for some u # 1)

d(u Z/;I.:fftt) =0 — d(u Z/Zf;) = 00, (poissble in S for some u)
d(u,wig) =co — d(u,wf) = o0,

(poissble in S for some u ¢ {2, yleft})

d(u,wf™) =00 — d(u,w™) =oco. (poissble in S for some wu)

The crucial observation is that the transformed training set just look like

239

one sampled from a quasimetric space where

— the quasimetric space has one less set of left-pattern elements,

— the quasimetric space has one more set of right-pattern elements, and

— transformed training set is bad on that extra right pattern (given by

the extra set of right-pattern elements),

which can be easily verified by comparing the transformed training set

with the requirements in Equations (B.73) and (B.74).

e Similarly, if S is bad on a right pattern specified by iright, Jright, , right,

consider the orthogonal transform that interchanges y;:

right
jright

d(x
d(y

jright ’

> w

right

right

d(u

d(u

Iright

/right

7:right) iright

right
jright
right
y]rlght

Iright
? iright

)
)
)

)

d(u, w/right)

d(u,w

right
jright

)

l

l

1
1

(0. ¢]

(0. 9]

0,@)

—

d(x
d(y

(poissble in S for some u ¢ {x]

rlght /right
yLrlght and

on 2nd input. In S the possible transformed pairs are

right rlght

7|'|ght7 Jrlght (knOWIl mn S>

Vi (known in S)

(/rlght
u, Lnght

)
right /rlght)
)
(

poissble in S for some u)
righ
d(y]rih:) = Oo?

rlght)

(poissble in S for some u # L ighe

d(u, w;'gg:tt) = 00,

(poissble in S for some u)

d(u, w”ight) = 0.

right right })
Uright]rlght

Again, the crucial observation is that the transformed training set just look

like one sampled from a quasimetric space where

— the quasimetric space has one less set of right-pattern elements,

— the quasimetric space has one more set of left-pattern elements, and

— transformed training set is bad on that extra left pattern (given by the

extra set of left-pattern elements),

240

which can be easily verified by comparing the transformed training set

with the requirements in Equations (B.71) and (B.72).

Therefore, when S is bad on both a left pattern and a right pattern (necessarily on

disjoint sets of pairs), we consider the following orthogonal transform composed

of:

(a) both transforms specified above (which only transforms 2nd inputs),
(so that after this we obtain another possible training set of same size from

the quasimetric space that is only different up to some permutation of X)

(b) a permutation of X (on both inputs) so that the bad left-pattern nodes
and the bad right-pattern nodes exchange features,

This transforms gives another possible training set of same size from the same
quasimetric space, also is bad on a left pattern and a right pattern. Moreover,
with a particular way of select bad patterns (e.g., by the order of the subscripts),
this process is reversible. Therefore, we have defined a way to pair up all such

bad training sets.

Consider the predictors CZbefore and cZafte, trained on these two training sets (be-
fore and after transform) with an learning algorithm equivariant to orthogonal
transforms. Assuming that they satisfy non-negativity and Identity of Indis-

cernibles, we have,

e The predictors have the same distortion over respective training sets.

Therefore we denote this distortion as diss((f) without specifying the pre-

dictor d or training set S.

e the predictors must predict the same on heldout pairs in the sense that

Cibefore(igiify zh@) - CZafter(yjr'ié:tt7 Zhright) (B75)

Czbefore (y]”i:tt, Z]'l,right) = dAafter(y:jfoL Zh|e&)- <B76)

241

Focusing on the first, we denote

~

d(y, z) = Czbefore(yylt‘e:fta i) = dafter(y;iri::v Zhraght) (B.77)

without specifying the predictor d or the specific y and z.

However, the quasimetric constraints on heldout pairs (y", z;, .) and (y;'rgg:tt, Zhigne)
are completely different (see the left vs. right part of Figure B-1). Therefore, as
shown in Figure B-1, assuming non-negativity, one of the two predictors must

have total violation at least

vio(d) > max (— SR d<y’z)A > : (B.78)
diss(d)(diss(d) + d(y, z)) | 2-disg(d)

Fixing a large enough ¢, two terms in the max of Equation (B.78) can equal for
some J(y, z), and are respectively decreasing and increasing in d(y, z). In that

case, we have

(B.79)

for 6 > 0 such that

— = (B.80)
disg(d)(disg(d) +) 2 -disg(d)

Solving the above quadratic equation gives

5 —disg(d) + 1/ disg(d)? + 8¢ (B31)

2 Y

leading to

14 \/1 + 8¢/disg(d)?

vio(d) > 1 (B.82)

242

Therefore, choosing ¢ > f2(4f, + 1)? gives

diss(d) < f. 5

e 1 \/1 +48c/di55(07)2 (B.84)
oLt Vit 823(4% + 12/ 12 (B.85)
-1/ +48(4fn + 1) (B.86)

§ #fnﬂ (B.87)

. (B.88)

Hence, for training sets that are bad on both a left pattern and a right pattern,

we have shown a way to pair them up such that

e cach pair of training sets have the same size, and

e the algorithm fail on one of each pair by producing a distance predictor

that

— has either distortion over training set > f,,, or violation > f,, and

— has test MSE > f,,.

Remark B.2.1. Note that all training sets of size m has equal probability of
being sampled. Therefore, to prove the theorem, it suffices to show that with

probability 1 — o(1), we can sample a training set of size m that is bad on both

a left pattern and a right pattern.

. Consider sampling training set as individually collecting each pair
with a certain probability p, and carefully analyze the conditions to
sample a training set with the special properties with high probability
1—o(1).

In probabilistic methods, it is often much easier to work with independent ran-

dom variables. Therefore, instead of considering uniform sampling a training set

243

S of fixed size m, we consider including each pair in .S with probability p, cho-
sen independently. We will first show result based on this sampling procedure
via a second moment argument, and later extend to the case with a fixed-size

training set.

First, let’s define some notations that ignore constants:

f~g = f=(0+o0(1))yg (B.89)

f<g <= f=og) (B.90)

We start with stating a standard result from the second moment method (Alon

and Spencer, 2004).

Corollary B.2.2 (Corollary 4.3.5 of (Alon and Spencer, 2004)). Con-
sider random variable X = X;+ Xs+---+X,,, where X; is the indicator random
variable for event A;. Write i ~ j if i # j and the pair of events (A4;, A;) are

not independent. Suppose the following quantity does not depend on :
A*2£N P[4, | Al (B.91)
i
If E[X] = o0 and A* < E [X], then X ~ E [X] with probability 1 — o(1).
We will apply this corollary to obtain conditions on p such that S with prob-
ability 1 — o(1) is bad on some left pattern, and conditions such that S with

probability 1 — o(1) is bad on some right pattern. A union bound would then

give the desired result.

e S is bad on some left pattern.

Recall that a left pattern is specified by e, Jieft, [eris Miere all € [k]:

left | left Nleft /left left
($7?|eft’ Yiretr Wiee > Yiiee » Wiiero Zhleft) <B92)

244

n

2)* events of the form

Therefore, we consider k% = (

A £ [S is bad on the left pattern at i, jiete, et Pt }-

(B.93)

TleftsJleft left s Pleft

Obviously, these events are symmetrical, and the A* in Equation (B.91)

does not depend on 1.

By the quasimetric space construction and the requirement for S to be
bad on a left pattern in Equations (B.71) and (B.72), we can see that

)) . . , o . . .
(Zleftajlefta ahfleft) ~ (Zlefﬂjleft? 7h|eft) only if ijer = Uefe OF Jleft = Jiefe OT

I _ /
= or Nier = Ny

245

Therefore, we have

+n3p21_p7
+n3p41_p9
+n3p41_p10

+n2pt(1 — p)®
+n2pt(1 = p)?
+n2p?(1 — p)*
+n’p(1—p)°
+n?p’(1 = p)
+n(l—p)
+np*(1—p)°
+np(l —p)
+np*(1 - p)

~n’p*(1—p)" +n*(p*(1

n((1—p)®+p*(1

(include 4 pairs & exclude 10 pairs
(share jief
(share i
(share
(share Ay
(share Jieft, ileft
(share Jief,

(share]Iefta hleft

(share Uleft, eft
(share /i.s, hiefe
(share e, Liete, et

(share Jieft , Nief
(share Jlefes Ueft, Pefe
(Share jleftv 7|eft>

—p)* +p(1-p)°) (B.94

)
)
)
)
)
)
)
)
(share i, [t
)
)
)
)
)
)
94)
- D)) (B.95)

Therefore, to apply Corollary B.2.2, we need to have

(1 —-p)? = o0 (B.96)

n’p*(1—p)" < n'p'(1 —p)* (B.97)

n?(P*(1 = p)* +p(1 = p)°) < n'p'(1 — p)* (B.98)
n((1=p)’ +p*(1 = p)) < n'p'(1—p)", (B.99)

246

which gives

p>nt? (B.100)

1—p>n /3 (B.101)

as a sufficient condition to for S to be bad on some left pattern with
probability 1 — o(1).

e S is bad on some right pattern.

Recall that a right pattern is specified by iright, Jright, hyigne all € [K]:

right rright right right /right
(:L‘iright ? Jiight ? < Jright wjright W ’ Zhright) (B'102)

n

)% events of the form

Similarly, we consider k% = (

A £ {S is bad on the left pattern at iight, jright, , Pright }-

(B.103)

'irightyjrighty 7hright

Again, these events are symmetrical, and A* in Equation (B.91) does not

depend on 7.

247

Similarly, we have

E[X] ~ n*p*(1 — p)™ (include 4 pairs & exclude 10 pairs

A* < n3p3(1 _p)g

~n’p’(1 - p)® + n’*p*(1 — p)*

(share 7gh

(B.104

)

)

+n’p*(1 —p)® (share Jjright)
+n®p*(1 — p)'° (share hyight)
+n’pt(1 — p)° (share)
+n?p*(1 —p)* (share iyight, Jright)
+n?*p*(1 — p)? (share sight, right)
+n2p3(1 — p)® (share 7yight,)
+ n%p*(1 — p)” (share jright, Nright)
+n?p*(1 —p)° (share jignt,)
+n?p*(1 — p)° (share hyight,)
+np*(1 —p)* (share Jright, lright,)
+np?(1 —p)® (share Zright, Mright,)
+ np*(1 —p) (share Zyight, Jrights)
+n(l —p) (share iright, Jright, Mright)
)

)

+n(l —p).

Therefore, to apply Corollary B.2.2, we need to have
11—) 5 0o
n’p*(1—p)® < n'p'(1 —p)*
n?p*(1 —p)* < n'p*(1 —p)*°
n(1—p) <n'p'(1-p)*,

248

(B.105

which gives

p>n73 (B.110)

1—p>n /3 (B.111)

as a sufficient condition to for S to be bad on some right pattern with
probability 1 — o(1).

So, by union bound, as long as

p>nt? (B.112)

1—p>n 3 (B.113)

S is bad on some left pattern and some right pattern with probability 1 — o(1).

. Extend to fixed-size training sets and show that, under similar condi-
tions, we sample a training set with the special properties with high

probability 1 — o(1).

To extend to fixed-size training sets, we consider the following alteration pro-

cedure:

(a) Sample training set S by independently include each pair with probability

p £ ™8 for some § > 0.

(b) Show that with high probability 1 —o(1), we end up with [m, m + 24| pairs
in S.
(c) Make sure that p satisfy Equation (B.112) and Equation (B.113) so that S

is bad on some left pattern and some right pattern with high probability
1—o(1).

(d) Randomly discard the additional pairs, and show that with high probabil-

ity 1 — o(1) this won’t affect that S is bad on some left pattern and some
right pattern.

249

We now consider each step in details:

(a)

(d)

Sample training set S by independently include each pair with

m40 for some § > 0.

probability p £

For p £ ”1;5, the number of pairs in the training set is distributed as
. : m+ 6
Binomial(n?, 7) (B.114)

Show that with high probability 1—o(1), we end up with [m, m+24]

pairs in S.

Standard Binomial concentration tells us that,

s M—+0

5> ny/p(1 —p) = P |Binomial(n ,7) ¢ [m,m+ 24]| — 0,
(B.115)
which can be satisfied if
d>n. (B.116)

Make sure that p satisfy Equation (B.112) and Equation (B.113)
so that S is bad on some left pattern and some right pattern with
high probability 1 — o(1).

Therefore, we want

5
ME0 s p12 (B.117)
n
ALY} (B.118)
n

Randomly discard the additional pairs, and show that with high
probability 1 — o(1) this won’t affect that S is bad on some left

pattern and some right pattern.

Consider any specific bad left pattern and a right pattern in S. It is

sufficient that we don’t break these two patterns during discarding.

Since we only discard pairs, it suffices to only consider the pairs we want

250

to preserve, which are a total of 8 pairs across two patterns.

Each such pair is discarded the probability < 2—ﬂf, since we remove at most

20 pairs. By union bound,

166
P[all 8 pairs are preserved] > 1 — —. (B.119)
m
Hence, it suffices to make sure that
K m. (B.120)
Collecting all requirements, we have
d>n (B.121)
)
A0 s p12 (B.122)
n
)
-0 s (B.123)
n
o K m. (B.124)
Assume that
m ~1/2
5> / (B.125)
m -1/3
L= >n /3, (B.126)

It can be easily verified that using § £ n'! satisfies all conditions.

Hence, for a uniformly randomly sampled training set S with size m, S is bad
on some left pattern and some right pattern with high probability 1 — o(1), as

long as

% > 12 (B.127)
1—Dosn s, (B.128)
n

251

This is exactly the condition we need to prove the theorem (see Remark B.2.1).

This concludes the proof. O

Discussions

Training set size dependency. Intuitively, when the training set has almost all
pairs, violation can be lowered by simply fitting training set well; when it is small
and sparse, the learning algorithm may have an easier job finding some consistent
quasimetric. Theorem 3.4.6 shows that, outside these two cases, algorithms equivariant
to orthogonal transforms can fail. Note that for the latter case, Theorem 3.4.6 requires
the training fraction to decrease slower than n~'/2, which rules out training sizes that is
linear in n. We leave improving this result as future work. Nonetheless, Theorem 3.4.6
still covers common scenarios such as a fixed fraction of all pairs, and highlights that
a training-data-agnostic result (such as the ones for PQEs) is not possible for these

algorithms.

Proof techniques. In embedding theory, it is quite standard to analyze quasimet-
rics as directed graphs due to their lack of nice metric structure. In the proof for
Theorem 3.4.6, we used abundant techniques from the probabilistic method, which
are commonly used for analyzing graph properties in the asymptotic case, including
Corollary B.2.2 from the second moment technique, and the alteration technique to
extend to fixed-size training sets. While such techniques may be new in learning
theory, they are standard for characterizing asymptotic probabilities on graphs, which
quasimetrics are often analyzed as (Charikar et al., 2006; Mémoli et al., 2018).

To provide more intuition on why these techniques are useful here, we note that the
construction of a training set of pairs is essentially like constructing an Erd&s-Rényi

2

random graph on n* vertices. Erdés-Rényi (undirected) random graphs come in two

kinds:
e Uniformly sampling a fixed number of m edges;

e Adding an edge between each pair with probability p, decided independently.

252

The latter, due to its independent decisions, is often much easy to analyze and preferred
by many. The alteration technique (that we used in the proof) is also a standard way
to transfer a result on a random graph of the latter type, to a random graph of the
former type (Bollobas and Béla, 2001). Readers can refer to (Alon and Spencer, 2004;
Bollobas and Béla, 2001; Erdds and Rényi, 1959) for more in-depth treatment of these

topics.

Generalization to other transforms. The core of this construction only relies
on the ability to swap (concatenated) inputs between (x,y) <> (z,vy’) and between
(y,w) <> (y,w') via a transform. For instance, here the orthogonal transforms satisfy
this requirement on one-hot features. Therefore, the result can also be generalized to
other transforms and features with the same property. Our stated theorem focuses on
orthogonal transforms because they correspond to several common learning algorithms
(see Lemma 3.4.5). If a learning algorithm is equivariant to some other transform
family, it would be meaningful to generalize this result to that transform family, and

obtain a similar negative result. We leave such extensions as future work.

Corollary of Distortion and Violation for Unconstrained MLPs

Corollary B.2.3 (Distortion and Violation of Unconstrained MLPs). Let
(fn)n be an arbitrary sequence of desired violation values. There is an infinite collec-
tion of quasimetric spaces ((X,,d,))n=12.. with |X,| = n, &, C R"™ such that MLP
trained with squared loss in NTK regime converges to a function d that either

e fails non-negativity, or

o vio(d) > f,,
with probability 1/2 — o(1) over the random training set S of size m, as long as S
does not contain almost all pairs 1 —m/n? = w(n™"/?), and does not only include few

pairs m/n? = w(n='/?).

Proof of Corollary B.2.3. This follows directly from Theorem 3.4.6 and standard NTK
convergence results obtained from the kernel regression optimality and the positive-

definiteness of the NTK. In particular, Proposition 2 of (Jacot et al., 2018) claims

253

le—-8

6
—— Training MSE for MLPs trained on the left pattern 200 3(y, 2) for MLPs trained on the left pattern
5 Training MSE for MLPs trained on the right pattern (;I(y, 2) for MLPs trained on the right pattern
44 300
3
200
al
100 ”
1 | -
— y
04 T 04
0 200 400 600 800 1000 0 200 400 600 800 1000
c c

(a) Training losses for varying c. Note the scale (b) Prediction on heldout pair d(y, z) for varying
of the vertical axis. c.

Figure B-2: Training unconstrained MLPs on the toy failure construction discussed in
Section 3.4.2 (reproduced as Figure B-1). Two patterns in the construction have different
constraints on distance of the heldout pair (y, z). Plots show mean and standard deviations
over 5 runs. Left: All training conclude with small training error. Right: Trained MLPs
predict identically for both patterns. Here standard deviation is small compared to mean
and thus not very visible.

that the NTK is positive-definite when restricted to a hypersphere. Since the con-
struction in proof of Theorem 3.4.6 uses one-hot features, the input (concatenation of
two features) lie on the hypersphere with radius v/2. Hence, the NTK is guaranteed
positive definite. O

Empirical Verification of the Failure Construction

We train unconstrained MLPs on the toy failure construction discussed in Section 3.4.2
(reproduced as Figure B-1). The MLP uses 12-1024-1 architecture with ReLU acti-
vations, takes in the concatenated one-hot features, and directly outputs predicted
distances. Varying ¢ € {1, 10, 100,1000}, we train the above MLP 5 times on each of
the two patterns in Figure B-1, by regressing towards the training distances via MSE
loss.

In Figure B-2, we can see that all training runs conclude with small training error,
and indeed the trained MLPs predict very similarly on the heldout pair, regardless
whether it is trained on the left or right pattern of Figure B-1, which restricts the
heldout pair distance differently.

This verifies our theory (Theorem 3.4.6 and Corollary B.2.3) that algorithms equiv-

254

Perturb
u—u+to

/ Perturb
) u—u+to
/"k(u) R(u)

P[R(u) = R(u)] =1

/r"'ii(u) R(u+06) ”/,,,.*ky(u) R(u) /,.ﬁ(u) R(u+06)

(R(u), R(u+ 0)) has bounded density on R?
= P[R(u) = R(u+0)] =0

(a) Continuous-valued stochastic process. (b) Discrete-valued stochastic process.

P[R(u) = R(u)] =1 Most probability still on R(u) = R(u + 6)

Figure B-3: Bivariate distributions from different stochastic processes. Left: In a continuous-
valued process (where (Ny, Ny) has bounded density if § # 6'), perturbing one § — 0 + ¢
leaves P[Ng = Ny..] = 0. Then one of]P’[Ng < Ngﬂ} and I[”[N9+C < Ng] must be far
away from 1 (as they sum to 1), breaking differentiability at either P[Ng < Ny] = 1 or
P[Nyie < Nyi] = 1. Right: For discrete-valued processes, most probability can still be left
on Ng = Ny, and thus do not break differentiability.

ariant to orthogonal transforms (including MLPs in NTK regime) cannot distinguish

these two cases and thus must fail on one of them.

B.3 Proofs and Discussions for Section 3.5: Poisson

Quasimetric Embeddings (PQEs)

B.3.1 Non-differentiability of Continuous-Valued Stochastic Pro-

cesses

In this section we formalize the argument presented in Section 3.5.3 to show why
continuous-valued stochastic processes lead to non-differentiability. Figure B-3 also

provides a graphical illustration of the general idea.

Proposition B.3.1 (Quasimetric Embeddings with Continuous-Valued Stochas-
tic Processes are not Differentiable). Consider any R*-valued stochastic process
{R(u)}yera such that u # v = P[R(u) = R(u)] < c¢ for some universal constant

¢ < 1. Then P[R(u) < R(«')] is not differentiable at any u = u'.

Proof of Proposition B.3.1. Assume that the quantity is differentiable. Then it must
be continuous in u and v.

We will use the (e, §)-definition of continuity.

255

At any u € R?, consider small € € (0, 1%‘3) By continuity, since
P[R(u) < R(u)] =P[R(u+) < Ru+9)] =1 (B.129)
we can find € € R? such that

P[R(u) < R(u+0)] >1—¢ (B.130)
P[R(u+0) < R(u)] > 1—e. (B.131)

However, by assumption, P [R(u) = R(u + 9)] < ¢. Therefore,

P[R(u) < R(u+d)] >1—e€ (B.132)
P[R(u+0d) < R(u)] >1—€e—c, (B.133)
which implies
5 2
1=P[R(u) < Ru+9)]+P[R(u+0) < R(u)] >2—2e—c> 336> 1. (B.134)
By contradiction, the quantity must not be differentiable at any v = u'. O]

B.3.2 PQE-GG: Gaussian-based Measure and Gaussian Shapes

In Section 3.5.1, we presented the following PQE-LH formulation for Lebesgue measures

and half-lines:
dZPQE-LH (u’ 1}) 4 Z ;- (1 — exp (— Z(U@j — ’UiJ)Jr))_ (310)
i J
Here, u; ; and v, j receive zero gradient when u; ; < v; ;.

Gaussian shapes parametrization. We therefore consider a set parametrization
where no one set is entirely contained in a different set— the regions regions C R?

between an axis and a 1D Gaussian density function of fixed variance o = 1. That

2
shape

256

is, for each given u € R, we consider sets

An(p) & {(a,0): b € [0, fa(a; 1, 1]}, (B.135)

where far(b; p, 0%) denotes the density of 1D Gaussian N (i, 0?) with mean p and

variance o2

evaluated at b. Since the Gaussian density function have unbounded
support, these sets, which are translated versions of each other, never have one set fully
contained in another. For latent u € R"** reshaped as 2D, our set parametrizations
are,

u— A j(u) = An(uig), i €[h],j €[k]. (B.136)

A Gaussian-based measure. These subsets of R? always have Lebesgue measure
1, which would make PQE symmetrical (if used with a (scaled) Lebesgue measure).
Thus, we use an alternative R? measure given by the product of a R Lebesgue measure
on the b-dimension (i.e., dimension of the function value of the Gaussian density)
and a R Gaussian measure on the a-dimension (i.e., dimension on the input of the

i.j- To avoid being

Gaussian density) centered at 0 with learnable variances (02 .c.re)

constrained by the bounded total measure of 1, we also optimize learnable positive
scales ¢; ; > 0. Hence, the each Poisson process has a mean measure as the product
of a R Lebesgue measure and a R Gaussian with learnable standard deviation, then
scaled with a learnable scale.

Note that the Gaussian measure should not be confused with the Gaussian shape.

Their parameters also are fully independent with one another.

Computing measures of Gaussian shapes and their intersections. The in-
tersection of two such Gaussian shapes is formed by two Gaussian tail shapes, reflected
around the middle point of the two Gaussian means (since they have the same standard
deviation oM = 1). Hence, it is sufficient to describe how to integrate a Gaussian
density on a Gaussian measure over an interval. Applying this with different intervals
would give the measure of the intersection, and the measures of the two Gaussian

shapes. Omit indices ¢, 5 for clarity. Formally, we integrate the Gaussian density

257

fa(a;u, 05,5.) over the centered Gaussian measure with variance o7, Which has
density far(a;0, 02 easure):
[e 000,03 (00,) (B.137)

which is also another Gaussian integral (e.g., considered as integrating the product
measure along the a line of the form y = x+u). After standard algebraic manipulations

(omitted here), we obtain

[& B0, 1050,) o (B.135)
2 2

_ c- eXp 2/o-total /f./\/ (CL u measure UShaPeJmEBSUfe) da (B139)
total t20tal Utzotal

for

2 A2
Ototal — Ushape + O measure:

(B.140)

This can be easily evaluated using statistical computing packages that supports
computing the error function and/or Gaussian CDF. Moreover, this final form is also

readily differentiable with standard gradient formulas. To summarize,

e cach set A(u) has total measure

—exp (—u?/02) ; (B.141)

27TO’totaI

e the intersection of A(v) and A(us), for v < us has measure

+ug
27,2 2 2 2 2
c- eXp (_UZ/O-total) 2 O-measure Ushapeameasure
5 In @ ue =", 5 dae (B.142)
2T ol —o0 total Ototal
2 2 “+o0o 2 2 2
C-€exXp (_U /Utotal) Umeasure Jshapeameasure d B.143
+ = o n SEa 5 a. (B.143)
20l = total Ototal

Interpretation and representing any total order. Consider two Gaussian

shapes A(v) and A(us). Note that the Gaussian-based measure figaussian 1S Symmetric

258

around and centered at 0. Therefore,

|U| < |u2| - ﬂGaussian(A(U)) > MGaussian(A(UQ)) (B144)
- MGaussian(A(U) \ A(U2)) > MGaussian(A<u2) \ A(U)) (B145>

Moreover, scaling the rates of a Poisson makes it more concentrated (as a Poisson’s
mean grows as the square of its standard deviation) so that lim. ., P [Pois(cu1) < Pois(cus)] =
1, <y, for 1 # p1o. Then any total order can be represented as the limit of a Poisson
process with Gaussian shapes, with the shapes’ having their means arranged according

to the total order, as the scale on the Gaussian-based measure grows to infinity.

B.3.3 Theoretical Guarantees for PQEs

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of
Section 3.4, any quasimetric space with size n and treewidth ¢ admits a PQE-LH and
a PQE-GG with distortion O(tlog?n) and violation 1, with an expressive encoder
(e.g., a ReLU network with > 3 layers and polynomial width).

In Section 3.5.4, we presented the above theoretical distortion and violation
guarantees for PQE-LH and PQE-GG. Furthermore, we commented that the same
guarantees apply to more generally to PQEs satisfying a mild condition. Here, we first
precisely describe this condition, show that PQE-LH and PQE-GG do satisty it, state

and prove the general result, and then show the above as a straightforward corollary.

The Concentration Property

Recall that PQEs are generally defined with measures p and set parametrizations A

as

dZPQE(u, vip, A a) 2 Z oy - EﬂzNHZQE(u“Ai) (7. (u,v)], (3.14)

where

B, eee(, lm(u,v)] £ 1 - HP [N;(Aj(u)) < N;(A4;(v))] . (3.13)

J

259

Because the measures ;1 and set parametrizations A themselves may have parame-
ters (e.g., as in PQE-GGQG), we consider them as classes of PQEs. E.g., PQE-GG is
a class of PQEs such that the p is the specific Gaussian-based form, and A is the

specific Guassian-shape.

Definition B.3.2 (Concetration Property of PQEs). Consider a PQE class with
h mixtures of quasipartition distributions, each from k Poisson processes. We say
that it has concentration property if it satisfies the following. Consider any finite

subset of X’ C X, and arbitrary function g: X — R"**_ There exists a sequence of

((f™, u™ A™), such that
o fW: X" 5 RY
° ,u("), A™ are valid members of this PQE,

o B _mree(, A, [Wz(f(") (2), f(")(y’))} uniformly converges to 1—Hj Lg(2), <o)

over all mixtures 7 and pairs z,y € X”.

A sufficient condition. It suffices to make the probabilities
(x,y,i,j) —)P[N](A](UD < Nj(Aj(U))]> (B146)
along some PQE sequence uniformly converge to the indicators

($, Y, Za]) —]-g(x’)ingg(y’)iyj' (B147)

This is sufficient since product of bounded functions is uniformly convergent, if
each function is. Both statements below together form a sufficient condition for

Equation (B.146) to uniformly converge to Equation (B.147):
1. For any g, there exists a specific PQE of this class satisfying

e Measures (of set differences) are consistent with ¢ with some margin ¢ > 0:

260

Vielh|,jelkl,z e X ye X,

e Fither of the following:

— One side must be zero: Vi € [h],j € [k],x € X,y € &,

(prj (Ai i (F (@) \ Aig (F(W)))) (i (Aii (F () \ Aij (f()))) =0,
(B.148)

— Max measure is bounded by some constant ¢ > 0:

max j; (A (f () \ Aij(f(y))) < e (B.149)

Z,Y,%,]

2. For any given specific PQE of this class, for any positive scale d > 0, there is
another PQE (with same formulation) whose measures (of set differences) equal

exactly those of the given PQE scaled by d.

We now show that this is a sufficient condition. Note that a Poisson distribution has
standard deviation equal to square root of its mean. This means that as we scale the

rate of a Poisson, it becomes more concentrated. Applying to Poisson race probability,

we have, for 0 < py + € < po,

261

e one direction of Poisson race probability:

P [Pois(d - 1) < Pois(d - p2)] (B.150)
> P[[Pois(d - p2) — Pois(d - pi1) — d(pz — pa)| < d(pz —)] (B.151)
M1+ 2

S _Mths B.152

21—y (152
1—2 ifu; =0

> de ' (B.153)
1— % if py < ¢

e the other direction of Poisson race probability:

P [Pois(d - p2) < Pois(d - p1)] (B.154)
< P[[Pois(d - p2) — Pois(d - 1) — d(pz — pa)| = d(p2 —)] (B.155)
M1+ fio
< _ B.156
= d(pg —)? ()
2 if =0
< ' (B.157)
d% it s < c.

Therefore, applying to scaled versions of the PQE from Item 1 above, we have
thus obtained the desired sequence, where Equation (B.146) uniformly converges to

Equation (B.147) with rate O(1/d).
Lemma B.3.3. PQE-LH and PQE-GG both have the concentration property.

Proof of Lemma B.3.3. We show that both classes satisfy the above sufficient condi-

tion.

e PQE-LH: Lebesgue measure \ and half-lines.

WLOG, since X is countable, we assume that g satisfies

9(@)i; # 9(W)i; = 19(x)i; —9(y)i |l > 1, Vie[h],jelkl,ze X yeX'
(B.158)

262

The encoder in Item 1 above f: X — R"** can simply be g. We then have

i (Ai i (F (9)\Ai;(f(2))) = Leb((—00, g(y)]\ (=00, g(2)]) = (9(y)i;—9(x)is)"-
(B.159)
This ensures that one side is always zero. Furthermore, scaling can be done by

simply scaling the encoder f. Hence, PQE-LH satisfies this constraint.

PQE-GG: Gaussian-based measure and Gaussian shapes (see Appendix B.3.2).

Because X” is finit, we can have positive constant margin for the PQE require-
ments in Item 1. (Infinite X" does not work because the total measure is finite
(for a specific PQE-GG with specific values of the scaling).) Concretely, we

satisfy both requirements via

— in descending order of g(-); ; we assign Gaussian shapes increasingly further

from the origin;

— scaling comes from that we allow scaling the Gaussian-based measure.

Hence, PQE-GG satisfies this constraint for finite X.

A General Statement

We now state the general theorem for PQEs with the above concentration property.

Theorem B.3.4 (Distortion and violation of PQEs (General)). Consider any

PQE class with the concentration property. Under the assumptions of Section 3.4,

any quasimetric space with size n and treewidth ¢ admits such a PQE with distortion

O(tlog®n) and violation 1, with an expressive encoder (e.g., a ReLU network with

> 3 hidden layers, O(n) hidden width, and O(n?) quasipartition distributions, each

with O(n) Poisson processes.).

Before proving this more general theorem, let us extend a result from Mémoli et al.

(2018).

263

Lemma B.3.5 (Quasimetric Embeddings with Low Distortion; Adapted
from Corollary 2 in Mémoli et al. (2018)). Let M = (X,d) be a quasipseu-
dometric space with treewidth ¢, and n = |X|. Then M admits an embedding into

a convex combination (i.e., scaled mixture) of O(n?) quasipartitions with distortion

O(tlog®n).

Proof of Lemma B.3.5. The distortion bound is proved in Corollary 2 in (Mémoli
et al., 2018), which states that any quasipseudometric space with n elements and ¢
treewidth admits an embedding into a convex combination of quasipartitions with
distortion O(tlog?n).

To see that n? quasipartitions suffice, we scrutinize their construction of quasipar-

titions in Algorithm 2 of (Mémoli et al., 2018), reproduced below as Algorithm 2.

Algorithm 2 Random quasipartition of a graph with bounded treewidth. Algo-
rithm 2 of (Mémoli et al., 2018).

Input: A digraph G of treewidth ¢, a hierarchical tree of separators of G (H, f) with width

t,and r > 0.

Output: A random r-bounded quasipartition R.
Initialization: Set G* = G, H* = H and R = E(G). Perform the following recursive
algorithm on G* and H*.
Step 1. Pick z € [0,7/2] uniformly at random.
Step 2. If |[V(G*)| < 1lterminate the current recursive call. Otherwise pick the set
of vertices K = G*. Let Hy,..., H, be the sub-trees of H* below root(H*) that are
hierarchical trees of separators of C', ..., C,, respectively.

Step 3. For all (u,v) € E(G*) remove (u,v) from R if one of the following holds:
(a) dg(u,x) > z and dg(v,z) < z for some vertex = € K.
(b) dg(x,v) > z and dg(x,u) < z for some vertex x € K.

Step 4. For all i € {1,...,m} perform a recursive call of Steps 2-4 setting G* = G*[C}]
and H* = H,.
Step 5. Once all branches of the recursive terminate, enforce transitivity on R: For all

u,v,w € V(G) if (u,v) € R and (v,w) € R, add (u,w) to R.

264

Many concepts used in Algorithm 2 are not relevant for our purpose (e.g., 7-
bounded quasipartition). Importantly, we observe that for a given quasimetric space,
the produced quasipartition is entirely determined by the random choice of z in Step 1,
which is only used to compare with distance values between node pairs. Note that
there are n? node pairs, whose minimum distance is exactly 0 (i.e., distance from a
node to itself). Since z > 0, there are at most n? choices of z that lead to at most n?
different quasipartitions, for all possible values of 7.

The construction used to prove Corollary 2 of (Mémoli et al., 2018) uses exactly

quasipartitions given by this algorithm. Therefore, the lemma is proved. O

Lemma B.3.5 essentially proves the first half of Theorem B.3.4. Before proving
the full Theorem B.3.4, we restate the following result from (Hiraguchi, 1951), which
gives us a bound on how many total orders are needed to represent a general partial

order (i.e., quasipartition).

Theorem B.3.6 (Hiraguchi’s Theorem (Hiraguchi, 1951; Bogart, 1973)).
Let (X, P) be a partially ordered set such that |X| > 4. Then there exists a mapping
f: X — RUXI2) such that

Vo, y € X, xPy <= f(z) < f(y) coordinate-wise. (B.160)

Proof of Theorem B.3.4. It immediately follows from Lemma B.3.5 and Theorem B.3.6
that any quasimetric space with n elements and treewidth ¢ admits an embedding
with distortion O(t log? n) into a convex combination of n? quasipartitions, each rep-
resented with an intersection of O(n) total orders.

Because the PQE class has concentration property, for any finite quasimetric
space, we can simply select a PQE that is close enough to the desired convex com-
bination of n? quasipartitions, to obtain distortion O(tlog®n). Since each Poisson
process in PQE takes a constant number of latent dimensions, we can have such a
PQE with O(n?®)-dimensional latents and n? quasipartition distributions.

It remains only to prove that we can compute such required latents using the

described architecture.

265

Consider any x € X C R% Since X is finite, we can always find direction u, € R?
such that Vy € X \ {z}, y"u, # x"u,. That is, z has a unique projection onto u,.

Therefore, we can have ¢,b,,b_ € R such that

coujr+by =1 (B.161)

—c-ulz+b_ =1, (B.162)

but for y € X\ {z}, we have, for some a > 0, either

couyy+by =—a (B.163)
—c-uly+b.=a+2, (B.164)
or
couly+by=a+2 (B.165)
—c-uly+b_ = —a. (B.166)

Then, consider computing two of the first layer features as, on input z,
[ReLU(c-u]z +by) ReLU(—c-ulz+b_)], (B.167)

which, if z = z, is [1,1]; if z # x, is either [0,2 + a] or [2 + a, 0], for some a > 0.

Then, one of the second layer features may sum these two features and threshold
it properly would single out z, i.e., activate only when input is z.

After doing this for all x € X', we obtain an n-dimensional second layer feature
space that is just one-hot features.

The third layer can then just be a simple embedding look up, able to represent
any embedding, including the one allowing a PQE to have distortion O(tlogn), as
described above.

Because quasimetric embeddings naturally have violation 1, this concludes the

proof. O

266

Proof of Theorem 3.5.2: Distortion and violation of PQEs

Proof of Theorem 3.5.2. Lemma B.3.3 and Theorem B.3.4 imply the result. To see
that polynomial width is sufficient, note that the hidden width are polynomial by
Theorem B.3.4, and that the embedding dimensions needed to represent each of the
O(n?) Poisson processes is constant 1 in both PQE-LH and PQE-GG. Hence the

latent space is also polynomial. This concludes the result. O

Discussions

Dependency on logn. logn dependency frequently occurs in distortion results.
Perhaps the most well-known ones are Bourgain’s Embedding Theorem (Bourgain,
1985) and the Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984),

which concern metric embeddings into Fuclidean spaces.

Dependency on treewidth t. Treewidth ¢ here works as a complexity measure of
the quasimetric. We will use a simple example to illustrate why low-treewidth is easy.
Consider the extreme case where the quasimetric is the shortest-path distance on a tree,
whose each edge is converted into two opposing directed ones and assigned arbitrary
non-negative weights. Such a quasimetric space has treewidth 1 (see Definition 3.2.2).

On a tree,
1. the shortest path between two points is fixed, regardless of the weights assigned,

2. for each internal node u and one of its child ¢, the followings are quasipartitions:

/ A
dOl (ZL’, y) —]-shortest path from z to y passes (u,c)

1" A
dOl (Z', 3/) = Lshortest path from z to y passes (c,u)-

Hence it can be exactly represented as a convex combination of quasipartitions.
However, both of observations becomes false when the graph structure becomes more
complex (higher treewidth) and the shortest paths can are less well represented as

tree paths of the tree composition.

267

Comparison with unconstrained MLPs. Theorem B.3.4 requires a poly-width
encoder to achieve low distortion. This is comparable with deep unconstrained MLPs
trained in NTK regime, which can reach 0 training error (distortion 1 on training set)

in the limit but also requires polynomial width (Arora et al., 2019b).

Quasipseudometrics and infinite distances. Theorem B.3.4 relies on our
assumptions that (X, d) is not a quasipseudometric space and has all finite distances.
In fact, if we allow a PQE to have infinite convex combination weights, it can readily
represent quasipseudometric spaces with infinite distances. Additionally, PQE can still
well approximate the quasimetric space with infinities replaced with any sufficiently
large finite value (e.g., larger than the maximum finite distance). Thus, this limit is
generally not important in practice (e.g., learning y-discounted distances), where a

large value and infinity are usually not treated much differently.

Optimizing quasimetric embeddings. From Theorem B.3.4, we know that op-
timizing PQEs over the training set S w.r.t. distortion achieves low distortion (and
optimal violation by definition). While directly optimizing distortion (or error on
log distance or distance ratios, equivalently) seems a valid choice, such objectives do
not always train stably in practice, with possible infinities and zeros. Often more
stable losses are used, such as MSE over raw distances or ~-discounted distances
74, for v € (0,1). These objectives do not directly relate to distortion, except for
some elementary loose bounds. To better theoretically characterize their behavior, an

alternative approach with an average-case analysis might be necessary.

B.3.4 Implementing Poisson Quasimetric Embeddings (PQEs)

Section 3.5.2 mentioned a couple implementation techniques for PQEs. In this section,

we present them in full details.

268

Normalized Measures

Consider a PQE whose each of j expected quasipartitions is defined via k Poisson
processes, with set parametrizations u — A; ;(u),i € [h],j € [k]. To be robust to the

choice of k£, we instead use the normalized set parametrizations Agyj’sz
Ajj(u) £ Aj(u) /K, i € [h],j€[k]. (B.168)

This does not change the PQE’s concentration property (Definition B.3.2) or its
theoretical guarantees (e.g., Theorems 3.5.2 and B.3.4).

Outputting y-Discounted Distances

Recall the PQE quasimetric formulation in Equation (3.14), for «; > 0, and encoder

f: X — R? (with set parametrizations A; ;’s and measures y; ;s):

o) 2 3 (1T B [Pois(uss (4L, (0 AL, (0) < Pois((AL, 0\ AL (0]),
Z : (3.14)
where we used shorthands A{ (@) £ Ag(f(2).

With discount factor vy € (0, 1), we can write the y-discounted PQE distance as

7ci<ac,y> _ H(e)1—HjP[Poiswi,j(A{j(x)\A{, ;W) <Pois(ui; (AL ;w\A] ; (2)] (B.169)

a scalar that can take value in any (0, 1)

Therefore, instead of learning a; € [0, 00), we can learn bases 3; € (0,1) such and

define the ~v-discounted PQE distance as

Jdza) 2 H Bil—nj P[Pois(ui s (4] ; (@)\A] ; (1) <Pois(ius (A] ;(W\AT ;(=))] (B.170)

These bases 3; € (0,1) can be parametrized via a sigmoid transform. Consider
quasimetric learning w.r.t. errors on «-discounted distances (e.g., MSE). Unlike the
parametrization with directly learning the convex combination weights «;’s, such a

parametrization (that learns the bases f5;’s) does not explicitly include v and thus can

269

potentially be more stable for a wider range of v choices.

Initialization. Consider learning bases [3;’s via a sigmoid transform: learning b,
and defining 3; = o(b;). We must take care in initializing these b;’s so that o(b;)’s are
not too close to 0 or 1, since we take a product of powers with these bases. To be
robust to different h numbers of quasipartition distributions, we initialize the each b;

to be from the uniform distribution
Ulo~10.52M), 071(0.752/M)], (B.171)
which means that, at initialization,
I8 = 1] e € 0.5,0.75], (B.172)
i€lh] i€lh]

providing a good range of initial outputs, assuming that the exponents (expected
outputs of quasipartition distributions) are close to 0.5. Alternatively, b;’s maybe
parametrized by a deep linear network, a similar initialization is employed. See

Appendix B.3.4 below for details.

Learning Linear /Convex Combinations with Deep Linear Networks

Deep linear networks have the same expressive power as regular linear models, but
enjoy many empirical and theoretical benefits in optimization (Saxe et al., 2013;
Pennington et al., 2018; Huh et al., 2021). Specifically, instead of directly learning

a matrix € R"™*" a deep linear network (with bias) of [layers learns a sequence of

270

matrices

]\41 c le Xn

M2 € Rm2xm

M,_; € Rmi-1xmi-s B.176
M, € R™*mi-1 B.177
B € R™" B.178

where the linear matrix can be obtained with

M, My, ... M, M, + B, (B.179)

and we require

min(my, me, ...,my—1) > min(m,n). (B.180)

In our case, the convex combination weights for the quasipartition distributions
often need to be large, in order to represent large quasimetric distances; in Poisson pro-
cess mean measures with learnable scales (e.g., the Gaussian-based measure described
in Appendix B.3.2), the scales may also need to be large to approximate particular
quasipartitions (see Appendix B.3.3).

Therefore, we choose to use deep linear networks to optimize these parameters. In

particular,

e For the convex combination weights for h quasipartition distributions,

— When learning the convex combination weights {;}icp, we use a deep
linear network to parametrize a matrix € R™” (i.e., a linear map from R”
to R), which is then viewed as a vector € R" and applied an element-wise

square transform a — a? to obtain non-negative weights o € [0, 00)";

— When learning the bases for discounted quasimetric distances ;s (see

Appendix B.3.4), we use a deep linear network to parametrize a matrix

271

€ R which is then viewed as a vector € R" and applied an element-wise
sigmoid transform a — o(a) to obtain bases 3 € (0, 1)".

Note that here we parametrize a matrix € R"*! rather than R'*" as above
for a;’s. The reason for this choice is entirely specific to the initialization
scheme we use (i.e., (fully-connected layer weight matrix initialization, as
discussed below). Here the interpretation of a linear map is no longer
true. If we use R'” the initialization method would lead to the entries
distributed with variance roughly 1/n, which only makes sense if they are
then added together. Therefore, we use R"*!, which would lead to constant

variance.

e For scales of the Poisson process mean measure, such as PQE-GG, we

consider a slightly different strategy.

Consider a PQE formulation with h x k independent Poisson processes, from
which we form h quasipartition distributions, each from £ total orders parametrized

by k Poisson processes. The Poisson processes are defined on sets

{Ai;Yiemjem) (B.181)
use mean measures
{1 g Yiem) jems (B.182)
and set parametrizations
{u — Aij(u)tiem,jeim, (B.183)
to compute quantities
pij(Aij(w)\ Aij(v)) forueR%veR’ielh]je k] (B.184)

Scaling each mean measure independently. Essentially, adding learnable

hxk

scales (of mean measures) w € [0,00)"*" (or, equivalently, {w;; € [0,00)};)

272

gives a scaled set of measures
{wij - pigtiemjem- (B.185)

This means that the quantities in Equation (B.184) becomes respectively scaled

as

’LUz"j . ,l,Li7j(Ai7j(U) \ Ai,j(v)) for u < Rd, Ve Rd,i c [h],j € [k’] (B186)

Convex combinations of all measures. However, we can be more flexible
here, and allow not just scaling each measure independently, but also convex
combinations of all measures. Instead of having w as a collection of h x k scalar
numbers € [0, 00), we have a collection of (h X k) vectors each having length

(h x k) (or h x k-shape tensors)

{wi; € [0,00)"*}icpl s (B.187)

and have the quantities in Equation (B.184) respectively scaled and combined

as

> wiga g - g (Al §' (W) \ Ay (v)) foru e RG v e RYd € [h], j € [K].

’ (B.188)
Note that these still are valid Poisson processes for a PQE. Specifically, the new
Poisson processes now all use the same set parametrization (as the collection of
original ones), with different measures (as different weighted combinations of
the original measures). This generalizes the case where each mean measure is

scaled independently (as w can be diagonal).

Therefore, we will apply this more general strategy using convex combinations

of all measures.
Similarly to learning the convex combination weights of quasipartition distribu-

273

RM<kxhxk “and apply an

tions, we collapse a deep linear network into a tensor €
element-wise square a — a2, result of which is used as the convex combination

weights w to ensure non-negativity.

Initialization. For initializing the matrices (Mj, Ms, ..., M;) of a deep linear net-
work (Equation (B.177)), we use the standard weight matrix initialization of fully-
connected layers in PyTorch (Paszke et al., 2019). The bias matrix B (Equa-
tion (B.178)) is initialized to all zeros.

When used for learning the bases for discounted quasimetric distances f3;’s (as
described in Appendix B.3.4), we have a deep linear network parametrizing a matrix
€ R initialized in the same way as above (including initializing B as all zeros).

Consider the matrix up to before the last one:
M* & M;_y - My M, € R™M—1%%, (B.189)

M* is essentially a projection to be applied on each row of the last matrix M; € R mi-1
to obtain b; (which is then used to obtain bases 3; = o(b;)). Therefore, we simply
rescale the M* subspace for each row of M; and keep the orthogonal space intact, such
that the projections would be distributed according to the distribution specified in
Equation (B.171):

Ule™1(0.52), 071(0.75%M)],, (B.171)

which has good initial value properties, as shown in Appendix B.3.4.

Choosing h the Number of Quasipartition Distributions and k£ the Number

of Poisson Processes for Each Quasipartition Distribution

A PQE (class) is defined with h x k independent Poisson processes with means
{13 ;i je along with h x k set parametrizations {A;;}icpn) jep- For k pairs of
means and set parametrizations, we obtain a random quasipartition. A mixture
(convex combination) of the resulting h random quasipartitions gives the quasimetric.

The choices of p and A are flexible. In this work we explore PQE-LH and PQE-GG

274

as two options, both using essentially the same measure and parametrization across
all 7,7 (up to individual learnable scales). These two instantiations both perform well
empirically. In this section we aim to provide some intuition on choosing these two

hyperparameters h and k.

h the Number of Quasipartition Distributions Theoretical result Theorem B.3.4
suggest thats, for a quasimetric space with n elements, n? quasipartition distributions
suffice to learn a low distortion embedding. Since this is a worst-case result, the prac-
tical scenario may require much fewer quasipartitions. For instance, Appendix B.3.3
shows that O(n) quasipartitions is sufficient for any quasimetric space with a tree

structure. In our experiments, h € [8,128] quasipartition distributions are used.

k the Number of Poisson Processes for Each Quasipartition Distribution
(Random Partial Order) It is well-known that such intersection of sufficiently
many total orders can represent any partial order (Trotter, 1995; Hiraguchi, 1951).
This idea is equivalent with the dominance drawing dimension of directed graphs
(Ortali and Tollis, 2019), which concerns an order embedding of the vertices to preserve
the poset specified by the reachability relation. In this graph theoretical view, several
results are known. (Felsner et al., 2010) prove that planar graphs have at most 8
dimension. (Ortali and Tollis, 2019) show that the dimension of any graph with n
vertices is at most min(wp, 5), where wp the maximum size of a set of incomparable
vertices. A simpler and more fundamental result can be traced to Hiraguchi from

1951:

Theorem B.3.6 (Hiraguchi’s Theorem (Hiraguchi, 1951; Bogart, 1973)).
Let (X, P) be a partially ordered set such that |X| > 4. Then there exists a mapping
f: X — RUXI/2) such that

Vo,y € X, zPy < f(x) < f(y) coordinate-wise . (B.160)

Theorem B.3.6 states that § dimensions generally suffice for any poset of size

n > 4.

275

Triangle inequality —
? < d(a,b) + d(b, ¢) = 31
?>d(a,b) —d(c,b) = 28
Figure B-4: The 3-element quasimetric space, and the training pairs. Training set contains

all pairs except for (a,c). Arrows show quasimetric distances (rather than edge weights of
some graph).

In our formulation, this means that using k& = % Poisson processes (giving § random
total orders) will be maximally expressive. In practice, this is likely unnecessary and

sometimes impractical. In our experiments, we choose a small fixed number k = 4.

B.4 Experiment Settings and Additional Results

Computation power. All our experiments run on a single GPU and finish within
3 hours. GPUs we used include NVIDIA 1080, NVIDIA 2080 Ti, NVIDIA 3080 Ti,
NVIDIA Titan Xp, NVIDIA Titan RTX, and NVIDIA Titan V.

B.4.1 Experiments from Section 3.3.2: A Toy Example
In Section 3.3.2 and Figure 3-2, we show experiment results on a simple 3-element

quasimetric space.

Quasimetric space. The quasimetric space has 3 elements with one-hot features

€ R3. Thequasimetric and training pairs are shown in Figure B-4.

Unconstrained network. The unconstrained network has architecture 6-128-128-

32-1, with ReLLU activations.

276

Metric embedding. The embedding space is 32-dimensional, upon which corre-
sponding metric is applied. The encoder network has architecture 6-128-128-32, with

ReLU activations.

Asymmetric dot products. The embedding space is 32-dimensional. The two
inputs are encoded with a different encoder of architecture 6-128-128-32, with ReLLU
activations. Then the dot product of the two 32-dimensional vector is taken, which

parametrizes a distance estimate

Poisson Quasimetric Embeddings. The embedding space is 32-dimensional,
which parametrizes 8 quasimetric distributions, each from 4 independent Poisson
processes using (scaled) Lebesgue measure and half-lines. We use deep linear networks,
as described in Appendix B.3.4. A deep linear network (without bias) of architecture
8-32-32-1 parametrizes the convex combination weights {c;};cg. Another deep linear
network (without bias) of architecture 32-64-64-32 parametrizes convex combination
weights of the mean measures d € [0, 00)?*32. Note that these do not give many more

effective parameters to PQEs as they are equivalent with simple linear transforms.

Optimization. All models are trained w.r.t. MSE on distances with the Adam
optimizer (Kingma and Ba, 2014) with learning rate 0.0003 for 1000 iterations (without

mini-batching since the training set has size 8).

Additional results. Results with additional formulations (together with the ones

presented in Figure 3-2) are shown in Figure B-5.

B.4.2 Experiments from Section 3.5.5: Experiments

Triangle inequality regularizer. For methods that do not inherently respect
triangle inequalities (e.g., unconstrained networks and asymmetrical dot products),
we explore training with a regularizer that encourages following these inequalities. By

sampling random triplets uniformly over the training set, the regularizer is formulated

277

Unconstrained Network
(Output Distance)
(Training £usg = 0.02 = 0.06)
100

80
60
Count
40
201

0 _,___m,, .
Valid

Range L— I
0

10 20 30

(a) Unconstrained network that
directly predicts distance.

£, Space Embedding
(Training Zmsg = 58.83 = 0.00)

100 A

801

60
Count

40

201

0+ T T T
Valid
Range L— I
0 10 20 30

(d) Metric embedding into an ¢4
space.

Unconstrained Network
(Output Square Root of Distance)
(Training Zmsg = 0.00 £ 0.02)

100

80

60

40

20

0 T T

Wl

0 10 20 30

(b) Unconstrained network that
predicts distance with a square
a — a? transform.

Euclidean Space Embedding
(Training Zmsg = 58.83 = 0.00)
100]

80

60

40

20 A

0

[Wl

0 10 20 30

(e) Metric embedding into an
Euclidean space.

Asym. Dot Product
(Output Square Root of Distance)
(Training £usg = 0.00 = 0.00)

100
80
60
40
20
0 L= . .
I o
0 10 20 30

(¢) Asymmetrical dot product
that predicts distance with a
square a — a? transform.

Poisson Quasimetric Embedding
(Training £usg = 0.02 £ 0.07)

100 4
80
60
40
20 A
0 T T +
I
0 10 20 30
() Poisson Quasimetric
Embedding specified in

Appendix B.4.1.

Figure B-5: Training different formulations to fit training pairs distances via MSE, and using
them to predict on the test pair. Plots show distribution of the prediction over 100 runs.
Standard deviations of the training error are shown.

278

as,

Ey .. [max(0, y 1@ +dwe) _ yd@2)y2) (B.190)

where the vy-discounted terms and the squared form allows easier balancing with the

training loss, which, across all experiments, are MSEs on some 7-discounted distances.

PQE settings. Across all experiments of this section, when given an encoder
architecture mapping input to an R¢ latent space, we construct PQEs according to the
following general recipe, to obtain the two PQEs settings used across all experiments:
PQE-LH (PQE with Lebesgue measure and half-lines) and PQE-GG (PQE with

Gaussian-based measure and Gaussian shapes, see see Appendix B.3.2):

e (Assuming d is a multiple of 4,) We use h == d/4 quasipartition distributions,

each given by k £ 4 Poisson processes;

e A deep linear network (see Appendix B.3.4), is used for parametrizing the convex
combination weights a € R%* or the bases 3 € R¥* (see Appendix B.3.4),
we follow the initialization and parametrization described in Appendix B.3.4,

. A
with hidden sizes [Thiddens Thiddens Thidden] (i-€., 4 matrices/layers), where npidgen =

max (64, 2+ log2(d/HT),
e For PQE-GG,

— The learnable o2, € (0,00)¢ (one for each Poisson Process) is achieved

by optimizing the log variance, which is initialized as all zeros.

— The Gaussian-based measures need learnable scales. We use a deep lin-

ear network to parametrize the [0, 00)?*?

weights for the convex com-
binations of measures, as described in Appendix B.3.4. Similarly, it
has hidden sizes [Nhiddens Thiddens Thidden] (i-€., 4 matrices/layers), where

Nhidden = Max (64, 21241,

Note that the PQEs add only a few extra effective parameters on top of the encoder
(d for PQE-LH, and d + d* for PQE-GQ), as the deep linear networks do not add

extra effective parameters.

279

Mixed space metric embedding settings. Across all experiments of this section,
when given an encoder architecture mapping input to an R? latent space, we construct

the metric embedding into mixed space as follows:

e (Assuming d is a multiple of 4,) We use (1) a (d/2)-dimensional Euclidean space
(2) a (d/4)-dimensional ¢; space, and a (d/4)-dimensional spherical distance

space (without scale).

e Additionally, we optimize three scalar values representing the log weights of the

convex combination to mix these spaces.

DeepNorm and WideNorm method overview and parameter count com-
parison with PQEs. Both DeepNorm and WideNorm parametrize asymmetrical
norms. When used to approximate quasimetrics, they are applied as d(:c,y) =
JasymNorm (fenc () — fenc(y)), where fenc is the encoder mapping from data space to an
R? latent space and fAsymNorm 1s either the DeepNorm or the WideNorm predictor on

that latent space (Pitis et al., 2020).

e DeepNorm is a modification from Input Convex Neural Network (ICNN; Amos
et al. (2017)), with restricted weight matrices and activation functions for positive
homogeneity (a requirement of asymmetrical norms), and additional concave

function for expressivity.

For an input latent space of RY, consider an n-layer DeepNorm with width w
(i.e., ICNN output size) and the suggested intermediate MaxReLU activation
and MaxMean final aggregation (see (Pitis et al., 2020) for details of these

280

functions). This DeepNorm predictor fpeepnorm (0D latent space) has

#parmaters of fpeepNorm = n X (d x w)
—_———

U matrices from input to each layer
2
+ (n—1) xw
W matrices between neighboring layer activations

+ n xXw

intermediate MaxReLU activations

+ w x (44 5)

concave function (with 5 components) parameters

+ 1 ;
—~—

final MaxMean aggregation

which is on the order of O(nw max(d,w)). In the common case where the hidden

size w is chosen to be on the same magnitude as d, this becomes O(nd?).

e WideNorm is based on the observation that
x — ||W ReLU(z :: —2)||, (B.191)

is an asymmetric norm when W is non-negative, where :: denotes vector concate-
nation. WideNorm then learns many such norms each with a different W matrix
parameter, before (again) feeding the norm values into a concave function and

aggregating them together with MaxMean.

For an input latent space of R?, consider a WideNorm with ¢ such learned

norms with W matrices of shape]Rgi)oxw. This WideNorm predictor fwidenorm

281

(on latent space), has

#parmaters of fivideNorm = ¢ X (2d X w)

W matrices

+ cx (4+5)
—_———

concave function (with 5 components) parameters
+ 1 ;
~—~
final MaxMean aggregation
which is on the order of O(cdw). In the common case where both the number
of components ¢ and the output size of each component (before applying the

[2-norm) are chosen to be on the same magnitude as d, this becomes O(d?).

For both DeepNorm and WideNorm, their parameter counts are much larger than
the number of effective parameters of PQEs (d for PQE-LH and d + d? for PQE-GG).

For a 256-dimensional latent space, this difference can be on the order of 10% ~ 107.

DeepNorm and WideNorm settings. Across all experiments of this section,
we evaluate 2 DeepNorm settings and 3 WideNorm settings, all derived from the
experiment setting of the original paper (Pitis et al., 2020). For both DeepNorm
and WideNorm, we use MaxReLLU activations, MaxMean aggregation, and concave
function of 5 components. For DeepNorm, we use 3-layer networks with 2 different
hidden sizes: 48 and 128 for the 48-dimensional latent space in random directed
graphs experiments, 512 and 128 for the 512-dimensional latent space in the large-scale
social graph experiments, 128 and 64 for the 128-dimensional latent space in offline
Q-learning experiments. For WideNorm, we components of size 32 and experiment

with 3 different numbers of components: 32, 48, and 128.

Error range. Results are gathered across 5 random seeds, showing both averages

and population standard deviations.

282

Random Directed Graphs Quasimetric Learning

Graph generation. The random graph generation is controlled by three parameters
d, pun and pgi. d is the dimension of the vertex features. p,, specifies the fraction
of pairs that should have at least one (directed) edge between them. pg; specifies
the fraction of such pairs that should only have one (directed) edge between them.
Therefore, if py, = 1, pgi = 0, we have a fully connected graph; if p,, = 0.5, pgi = 1, we
have a graph where half of the vertex pairs have exactly one (directed) edge between
them, and the other half are not connected. For completeness, the exact generation

procedure for a graph of n vertices is the following:

1. randomly add py,-n? undirected edges, each represented as two opposite directed

edges;

2. optimize R™ % vertex feature matrix using Adam (Kingma and Ba, 2014) w.r.t.
Laiign(@ = 2) + 0.3 - Lyniform(t = 3) from (Wang and Isola, 2020), where each two

node is considered a positive pair if they are connected;

3. randomly initialize a network f of architecture d-4096-4096-4096-4096-1 with

tanh activations;

4. for each connected vertex pair (u,v), obtain d,_,., = f(feature(u))— f(feature(v))

and dv~>u = _du%va

5. for each (u,v) such that d,_,, is among the top 1 — pgi/2 of such values (which
is guaranteed to not include both directions of the same pair due to symmetry

of dy_,), make v — u the only directed edge between u and v.
We experiment with three graphs of 300 vertices and 64-dimensional vertex features:
e Figure B-6: A graph generated with p,, = 0.15, pg; = 0.85;
e Figure B-7: A sparser graph generated with p,, = 0.05, pgi = 0.85;

e Figure B-8: A sparse graph with block structure by

283

1. generating 10 small dense graphs of 30 vertices and 32-dimensional vertex

features, using py, = 0.18, pgi = 0.15,

2. generating a sparse 10-vertex “supergraph” with 32-dimensional vertex

features, using py, = 0.22, pgi = 0.925,
3. for each supergraph vertex

(a) associating it with a different small graph,

(b) for all vertices of the small graph, concatenate the supergraph vertex’s
feature to the existing feature, forming 64-dimensional vertex features

for the small graph vertices,

(c) picking a random representative vertex from the small graph,

4. connecting all 10 representative vertices in the same way as their respective

supergraph vertices are connected in the supergraph.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)
use 64-128-128-128-48 network with ReLLU activations, mapping 64-dimensional inputs
to a 48-dimensional latent space. Unconstrained networks use a similar 128-128-
128-128-48-1 network, mapping concatenated the 128-dimensional input to a scalar

output.

Data. For each graph, we solve the groundtruth distance matrix and obtain 3002
pairs, from which we randomly sample the training set, and use the rest as the test set.

We run on 5 training fractions evenly spaced on the logarithm scale, from 0.01 to 0.7.

Training. We use 2048 batch size with the Adam optimizer (Kingma and Ba,
2014), with learning rate decaying according to the cosine schedule without restarting
(Loshchilov and Hutter, 2016) starting from 10™* to 0 over 3000 epochs. All models
are optimized w.r.t. MSE on the 7-discounted distances, with v = 0.9. When running
with the triangle inequality regularizer, 683 ~ 2048/3 triplets are uniformly sampled

at each iteration.

284

Full results and ablation studies. Figures B-6 to B-8 show full results of all
methods running on all three graphs. In Figure B-9, we perform ablation studies on
the implementation techniques for PQEs mentioned in Appendix B.3.4: outputting
discounted distance and deep linear networks. On the simple directed graphs such as
the dense graph, the basic PQE-LH without theses techniques works really well, even
surpassing the results with both techniques. However, on graphs with more complex
structures (e.g., the sparse graph and the sparse graph with block structure), basic
versions of PQE-LH and PQE-GG starts to perform badly and show large variance,
while the versions with both techniques stably trains to the best results. Therefore,

for robustness, we use both techniques in other experiments.

Large-Scale Social Graphs Quasimetric Learning

Data source. We choose the Berkeley-StanfordWebGraph (Leskovec and Krevl, 2014)
as the large-scale directed social graph, which consists of 685,230 pages as nodes, and
7,600,595 hyperlinks as directed edges. Additionally, we also use the Youtube social
network (Leskovec and Krevl, 2014; Mislove et al., 2007) as a undirected social graph,
which consists of 1,134,890 users as nodes, and 2,987,624 friendship relations as
undirected edges. Both datasets are available from the SNAP website (Leskovec and
Krevl, 2014) under the BSD license.

Data processing. For each graph, we use node2vec to obtain 128-dimensional
node features (Grover and Leskovec, 2016). Since the graph is large, we use the
landmark method (Rizi et al., 2018) to construct training and test sets. Specifically,
we randomly choose 150 nodes, called landmarks, and compute the distances between
these landmarks and all nodes. For directed graph, this means computing distances of
both directions. From the obtained pairs and distances, we randomly sample 2,500,000
pairs to form the training set. Similarly, we form a test set of 150,000 from a disjoint
set of 50 landmarks. For the undirected graph, we double the size of each set by

reversing the pairs, since the distance is symmetrical.

285

PQE-LH PQE-GG

Groundtruth Distance Matrix
(2.96% pairs are unreachable)

T
T

1073 1073
0.0 0.5 0. 0.5
20 DeepNorm DeepNorm WideNorm WideNorm WideNorm
(3-layer 128-width) (3-layer 48-width) (32-component) (48-) (128-)

= -
) o
-
)
-
)
-
)
-
)
-
)

103 10-3 10-3 10-3 10-3
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Net Unc i Net Unconstrained Net
5 Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid 0)

1)
i
1
r

10-3 10-3 10-3 10-3 10-3
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Net Unc ined Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight = 0.3
- T
—— PQE
—— Unconstrained Network | 1077 4 1072 4 1072 4 1072 4 1072 4
—— Metric Embedding g \§\ g \\
—— Asym. Dot Product
w d 10-3 10-3 10-3 10-3 10-3
2 102 — DeepNorm 0.0 05 0.0 05 0.0 05 0.0 05 0.0 05
= WideNorm L Net Unc ined Net Unconstrained Net
g Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
h=] (Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
@ A-ineq. Reg. Weight =1 neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1
m’z-k\ 1072_@ 1072-L 1072_\& 1072-L
107 107 107 107 107 107
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Training Set Fraction
uUnc Net i Net Unconstrained Net
Unconstrained Net (OUtput Dlstance (Output Distance Unconstrained Net ~ (Output y-Discounted Distance
(Output Distance) exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =3 =3 Adneq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

102 4

H
2
"
]

- F

3

:

‘9

E

o

&

E

1
-
]
=
]

10°3 103 103 1073 1073
0.0 05 0.0 05 0.0 05 0.0 05 0.0 05
Spherical Distance Mixed Space
Euclidean Metric Embedding /1 Metric Embedding Metric Embedding Metric Embedding
1072-L 1072-! 1072-L 1072-!
102 102 1072 1072
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

1072 4

g
:

!
A
:

1073 1073 1073 1073 1073
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) Vvia exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3

1072 4

:
[
:
:
[

107 107 107 107 107
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =1 neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1

1072 4

i
[
:
:
[

1072 107 1072 1072 1072
0.0 05 0.0 05 0.0 05 0.0 05 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

1072 4

[
L
-

1072 1072 1072
0.0 0.5 0.0 0.5 0.

Figure B-6: Approximating a dense graph Individual plots on the right show standard
deviations.

H
2
°
&
o
2
°
&

°

0.5

PQE-LH PQE-GG

Groundtruth Distance Matrix

(67.23% pairs are unreachable) 102 4 \\!

30

0.0 0.5
DeepNorm WideNorm WideNorm WideNorm
25 (3-layer 128-width) (32-component) (48- (128-
20
w0 |8 e N T 102 {85 = | | e N
15 = = —_— = ~——
10 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
i Net unc i Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
5 (Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid)
0
\ LN LN -
x 102_\& 10?-k 1024 % o
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
L ined Net Unc ined Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight = 0.3
—— PQE
—— Unconstrained Network N N
—— Metric Embedding ¥ 1074 ¥ 1079 N ¥
107! —— Asym. Dot Product —
w J—
2 DeepNorm 0.0 05 0.0 05 0.0 05 0.0 05 0.0 05
= WideNorm ined Net Unc ined Net Unconstrained Net
3 ined Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
S, (Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
% 10 A-ineq. Reg. Weight =1 neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1
N 1072 4 1072 4 \ ~ 1072 4
1073 —
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Training Set Fraction
L i Net [t i Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) Via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

A-ineq. Reg. Weight =3 neq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

L‘ 10-2-¥ 1024\ ~_ 10-2-\¥
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Spherical Distance Mixed Space
Euclidean Metric Embedding £, Metric Embedding Metric Embedding Metric Embedding
\
1o | IS {
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
-2 | % -2 | %
10 \\ SS R ¥ ¥
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3
=\ PUIN 2\ = |\ -2]
10 \\ 10 - |0 k 10 |0 ¥

0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance

(Output Distance)
Aineq. Reg. Weight =1

exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1

l(

0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

-2 {4 -2 |\ -
~ 102-¥ 1072 4 ~— — 10724

0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5

Figure B-7: Approximating a sparse ‘graph. Individual plots on the right show standard
deviations.

102 4

[
[

287

PQE-LH PQE-GG

Groundtruth Distance Matrix
(67.13% pairs are unreachable)

WideNorm WideNorm WideNorm
(32-component) (48- (128-
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
i Net unc i Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid)
107 107 1071 107 107
10’3-L 10*3-¥ 10*3-&\ 10*3-L 103
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
L ined Net unc ined Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight = 0.3
10°
— PQE 107 107 107 107 107
—— Unconstrained Network - - - - -
101 —— Metric Embedding 10734 10734 1034 1034 10- |
—— Asym. Dot Product
w J—
2 DeepNorm 0.0 05 0.0 05 0.0 05 0.0 05 0.0 05
= 102 WideNorm ined Net Unc Net Unconstrained Net
E Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
h=] (Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
% A-ineq. Reg. Weight =1 neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1

107 107 107 107 107
103] L 107 ! 1073 1073 L
107
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Training Set Fraction
L i Net L i Net Unconstrained Net
Unconstrained Net (Output Distance (Output Distance Unconstrained Net (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

A-ineq. Reg. Weight =3 neq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

07 07 07 07 07
10*3-¥ 10*3-L 10*3-L 1072 4 10*3-k\
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Spherical Distance Mixed Space
Euclidean Metric Embedding £, Metric Embedding Metric Embedding Metric Embedding
10-‘-r 1071 4 10714 1071 4
107 e 107 e 103 107 e
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
10714 10-1-i 10-1-§ 10714 10714
\ \ \ \
1073 4| e 10734 e 10734 e 1073 L 10734 e
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3
10-1-§ 10-1-i 10-1-§ 10714 10714
\ \ \ \
10734 e 1034 e 10734 e 1073 L 1034 e
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =1 neq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1

107 10-1-& 10-1-k 107 107
10731 10731 10734 e 1073 \\ 1034 e
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
Asym. Dot Product Asym. Dot Product Asym. Dot Product
Asym. Dot Product (Output Distance (Output Distance Asym. Dot Product (Output y-Discounted Distance
(Output Distance) via exp) via Square) (Output y-Discounted Distance) via Sigmoid o)

Aineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3

\ = N

\ 1034 10734

1071 4

1

0.0 0.5

plots on the

0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.

Figure B-8: Approximating a sparse graph with block structure. Individual
right show standard deviations.

288

Ablation Study of PQE-LH on the Dense Graph Ablation Study of PQE-GG on the Dense Graph

—— PQE-GG
—— PQE-GG — Discounted Dist.
—— PQE-GG - Discounted Dist. — Deep Linear Net

—— PQE-LH
—— PQE-LH — Discounted Dist.
~——— PQE-LH — Discounted Dist. — Deep Linear Net

Groundtruth Distance Matrix

1’
20
10
0

Groundtruth Distance Matrix
I \

20
+ 10
0

0.0 0.2 04 0.6 0.0 0.2 0.4 06
Training Fraction Training Fraction
Ablation Study of PQE-LH on the Sparse Graph Ablation Study of PQE-GG on the Sparse Graph
—— PQE-LH — PQE-GG
—— PQE-LH - Discounted Dist. —— PQE-GG — Discounted Dist.
w PQE-LH — Discounted Dist. — Deep Linear Net w PQE-GG — Discounted Dist. — Deep Linear Net
2 107 Groundtruth Distance Matrix 2 10 Groundtruth Distance Matrix
‘g i ; 30 g it i 30
z °
2 20 $ 20
107 1072
10 10
o o
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Training Fraction Training Fraction
Ablation Study of PQE-LH on the Sparse Graph with Block Structure Ablation Study of PQE-GG on the Sparse Graph with Block Structure

—— PQE-GG
—— PQE-GG - Discounted Dist.
—— PQE-GG - Discounted Dist. — Deep Linear Net

— PQE-LH
—— PQE-LH — Discounted Dist.
~——— PQE-LH — Discounted Dist. — Deep Linear Net

Groundtruth Distance Matrix

i

0.0 0.2 0.4 06 0.0 0.2 0.4 06
Training Fraction Training Fraction

Groundtruth Distance Matrix
TR
i 10

Heldout MSE
Heldout MSE

0

Figure B-9: Ablation studies of PQE-LH and PQE-GG on three random graphs.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)
use 128-2048-2048-2048-512 network with ReLLU activations and Batch Normalization
(Toffe and Szegedy, 2015) after each activation, mapping 128-dimensional inputs to a
512-dimensional latent space. Unconstrained networks use a similar 256-2048-2048-
2048-512-1 network, mapping concatenated the 256-dimensional input to a scalar

output.

Training. We use 1024 batch size with the Adam optimizer (Kingma and Ba,
2014), with learning rate decaying according to the cosine schedule without restarting
(Loshchilov and Hutter, 2016) starting from 10™* to 0 over 80 epochs. All models are
optimized w.r.t. MSE on the 7-discounted distances, with v = 0.9. When running
with the triangle inequality regularizer, 342 ~ 1024/3 triplets are uniformly sampled

at each iteration.

Full results. Tables B.1 and B.2 show full results of distance learning on these
two graphs. On the directed Berkeley-StanfordWebGraph, PQE-LH performs the best

289

MSE w.r.t. L1 Error Prediction d
Method Family Formulation ~-discounted when true when true
distances (x1073) | d<oo | d=o00t
PQE PQE-LH 3.0427 £ 0.1527 1.6263 =+ 0.0550 69.9424 £ 0.4930
Es
PQE-GG 3.9085 + 0.1258 1.8951 =+ 0.0336 101.8240 -+ 10.3970
Output distance d(w,y) 2 f(z.y) 3.0862 =+ 0.0392 21151 =+ 0.0241 59.5243 £ 0.3700
Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(z,y)) 3.3541 401759 1.0090 x 10% + 2.0179 x 10% 5.3583 x 10° + 1.0582 x 10°
(without Triangle Inequality Qutput distance via squaring a — a® y) = (fz,y)? 4.5663 =+ 0.2294 3.3459 4 0.2494 68.2613 + 11.6061
Regularizer) Output y-discounted distance ~lEw) £ fa,y) NaN =+ NaN NaN =+ NaN NaN =+ NaN
Output ~-discounted distance via sigmoid o(-) 149 2 o(f(x, y)) 3.1823 +0.1133 00 % NaN 65.8630 =+ 0.4287
Output distance d(z,y) 2 f(x.y) 2.8128 =+ 0.0625 2.2100 =+ 0.0341 61.3709 + 0.3936
Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(x,y)) 2.9344 + 0.0455 o0 & NaN 50 £ NaN
(Triangle Inequality Output distance via squaring a — a? d(z,y) 2 (f(z,y))? 4.9947 £ 0.4198 16.5445 =+ 29.3175 58.9205 =+ 6.4216
Regularizer Weight = 0.3) (0 - discounted distance D) & f() NaN + NaN NaN + NaN NaN + NaN
Output y-discounted distance via sigmoid o(-) 149 £ o(f(x,y)) 2.9178 + 0.1351 00 £ NaN 00 £ NaN
Output distance d(w,y) 2 flz.y) 3.0481 =+ 0.1272 2.3729 + 0.1378 60.4040 =+ 0.1890
Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(z,y)) 3.0161 + 0.0718 o0 & NaN 3.1289 x 1010 + 6.2579 x 1016
(Triangle Inequality Output distance via squaring a — a? d(z,y) 2 (f(z,y))? 4.4921 =+ 0.3534 3.6930 + 0.4896 90.6206 + 66.5704
Regularizer Weight = 1 i
Regularizer Weight =1) (¢ - discounted distance @) & f(g) 44046 + 0.5167 2.7873 + 0.0770 31.3195 + 0.9929
Output ~-discounted distance via sigmoid o(-) 149 2 o(f(x,y)) 2.9314 =+ 0.1022 2.2634 + 0.1147 00 £ NaN
Output distance d(z,y) 2 f(x,y) 5.2055 + 0.5279 3.8060 =+ 0.2908 58.1193 -+ 0.4383
Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(x,y)) 3.5713 + 0.2002 212.5421 + 416.9256 00 £ NaN
(Triangle Inequality Output distance via squaring a — a? d(z,y) 2 (f(2,y))? 4.3745 £ 0.3709 2.9491 + 0.2228 53.1119 =+ 5.5452
Regularizer Weight =3) () o1 -discounted distance) 2 f() 7.3416 + 0.6486 35232 + 0.1352 26.9200 + 0.4697
Output ~-discounted distance via sigmoid o(-) 149 2 5(f(x,y)) 3.5818 =+ 0.3565 00 £ NaN 65.7709 + 0.8646
Output distance d(z,y) 2 f(2)Tg(y) 3.1622 x 10" £ NaN 23.4270 & NaN 0.1529 & NaN
Asym. Dot Products Output distance via exp(-) d(, y) 2 exp(f(x)Tg(y)) NaN + NaN NaN + NaN NaN + NaN
(without Triangle Inequality Output distance via squaring a — a? d(z,y) 2 (f(2)Tg(y))? 48.1056 £ 0.0056 2.5195 x 10" £ 21751 x 10! 2.6794 x 10"+ 2.5308 x 10"
Regularizer) Output y-discounted distance) & f(2)Tg(y) NaN + NaN NaN + NaN NaN + NaN
Output y-discounted distance via sigmoid o(-) 7@ 2 o(f(2)Tg(y)) 48.1073 £ 0.0112 00 & NaN o0 = NaN
Output distance d(x,y) 2 f(z)Tg(y) NaN + NaN NaN + NaN NaN + NaN
Asym. Dot Products Output distance via exp(-) d(z,y) £ exp(f(2)Tg(y)) NaN = NaN NaN = NaN NaN =+ NaN
(Triangle Inequality Output distance via squaring a — a? d(,y) 2 (f(2)Tg(y))? 48.1041 £ 0.0035 1.9498 x 10" £ 7.9641 x 1010 1.6049 x 10'! =+ 3.7099 x 10'°
Regularizer Weight = 0.3) 0 o discounted distance) & f()To(y) NaN £ NaN NaN £ NaN NaN - NaN
Output -discounted distance via sigmoid o(-) 149 £ (f(2)Tg(y)) 48.1103 =+ 0.0110 00 £ NaN 00 £ NaN
Output distance r](1 y) 2 f(z)Tgly) NaN + NaN NaN + NaN NaN =+ NaN
Asym. Dot Products Output distance via exp(-) d(z,y) 2 exp(f(z VTa(y)) NaN 4+ NaN NaN 4+ NaN NaN + NaN
(Triangle Inequality Output distance via squaring a — a* d(z, y) 2 (f(x)Tg(y))? 481021 +0.0002 2.2986 x 10" £ 9.1970 x 100 2.5002 x 10"+ 1.4464 x 10"
Regularizer Weight =1)) (¢ o discounted distance Al & f(2)T g(y) NaN -+ NaN NaN -+ NaN NaN - NaN
Output ~-discounted distance via sigmoid o(-) 19 2 o(f(2)Tg(y)) 58.4804 =+ 23.2224 o0 % NaN 00 £ NaN
Output distance d(x,y) 2 f(z)Tg(y) NaN + NaN NaN + NaN NaN + NaN
Asym. Dot Products Output distance via exp(-) d(z,y) £ exp(f(2)Tg(y)) NaN = NaN NaN = NaN NaN =+ NaN
(Triangle Inequality Output distance via squaring a — a? d(w,y) 2 (f(2)Tg(y))? 48.1031 £ 0.0020 2.3522 x 10! & 2.6429 x 101 1.7025 x 101" £ 1.0700 x 10'!
Regularizer Weight =3) ¢ -discounted distance Al 2 ()T g(y) NaN £ NaN NaN £ NaN NaN - NaN
Output -discounted distance via sigmoid o(-) 149 2 (f(2)Tg(y)) 48.3034 =+ 0.4485 00 £ NaN 00 £ NaN
Euclidean space d(@,y) 2 1f(@) = FW)ll, 17.5952 = 0.2667 7.5309 =+ 0.0742 53.8500 <+ 3.8430
) _ £y space d(z,y) 2 [|f(x) - FW), 18.0521 -+ 0.3546 7.1154 + 0.1835 66.2507 + 3.3308
Metric Embeddings A .
Spherical distance space w/ learnable scale o d(z,y) 2 a - arccos(%) 19.2990 -+ 0.2032 6.9545 + 0.0887 32.1458 + 0.4562
Mixing above three spaces w/ learnable weights 17.8312 = 0.3099 7.3493 + 0.1086 51.7481 + 3.6248
3-layer 128-width 7.0862 % 0.3170 2.4498 + 0.0617 1112209 + 2.5045
DeepNorms
3-layer 512-width 5.0715 + 0.1348 2.0853 =+ 0.0633 120.0452 + 4.3525
32-component (each of size 32) 3.5328 + 0.2120 1.7694 + 0.0213 124.6580 + 2.8678
WideNorms 48-component (cach of size 32) 3.6842 + 0.2385 1.8081 =+ 0.0680 122.6833 =+ 5.5026
128-component (cach of size 32) 3.8125 + 0.2331 1.8096 =+ 0.0765 1285427 + 51412

Table B.1: Quasimetric learning on the large-scale directed Berkeley-StanfordWebGraph.

290

MSE w.r.t. L1 Error Prediction d

Method Family Formulation 7-discounted when true when true
distances (x107%) | d<ool d=o00?

PQEs PQE-LH 2.4400 =+ 0.0695 0.6480 =+ 0.0119 NaN =+ NaN
PQE-GG 2.5895 + 0.0318 0.6697 =+ 0.0042 NaN £ NaN

Output distance L Y) 1.4883 £ 0.0168 0.5084 =+ 0.0029 NaN =+ NaN

Unconstrained Nets Output distance via exp(-) y) 1.5223 + 0.0160 0.4910 + 0.0151 NaN + NaN
(without Triangle Inequality Output distance via squaring a — a2 d(z,y) 2 (f(z,y))? 2.2955 + 1.1674 0.6185 =+ 0.1409 NaN =+ NaN
Regularizer) Output ~-discounted distance Ade) & £ y) 15060 + 0.0228 0.4975 =+ 0.0211 NaN + NaN
Output v-discounted distance via sigmoid o(-) ,),a(_r,,y) 2 o(f(x,y)) 1.4802 =+ 0.0197 0.5082 + 0.0036 NaN £ NaN

Output distance d(z,y) 2 f(z,y) 1.5009 =+ 0.0208 0.5107 + 0.0032 NaN £ NaN

Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(z,y)) 15206 + 0.0444 0.4935 =+ 0.0098 NaN £ NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(z,y))? 1.7398 + 0.3896 0.5488 4 0.0600 NaN =+ NaN
Regularizer Weight =0.3) (o discounted distance Ad@) & f(ey) 1.5005 = 0.0148 0.4986 = 0.0121 NaN £ NaN
Output ~-discounted distance via sigmoid o(-) 44@¥ 2 o(f(z,y)) 1.4851 + 0.0168 0.5089 =+ 0.0026 NaN + NaN

Output distance d(x,y) 2 f(z,y) 1.4999 + 0.0243 0.5107 + 0.0046 NaN + NaN

Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(z, 7)) 1.5224 + 0.0376 0.4948 =+ 0.0169 NaN = NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(z.y))? 1.8875 + 0.5078 0.5692 =+ 0.0683 NaN =+ NaN
Regularizer Weight =1) Output y-discounted distance 7,3(1'-1/) 2 f(x,y) 1.4769 + 0.0176 0.4919 + 0.0128 NaN =+ NaN
Output y-discounted distance via sigmoid o(-) WJ(T’@) 2 o(f(z,y)) 1.4846 =+ 0.0115 0.5088 =+ 0.0021 NaN =+ NaN

Output distance d(z,y) 2 f(z,y) 1.4939 + 0.0110 0.5099 =+ 0.0018 NaN + NaN

Unconstrained Nets Output distance via exp(-) d(z,y) 2 exp(f(z,y)) 1.5154 + 0.0389 0.4871 4 0.0174 NaN = NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(x,y))? 2.4747 + 1.0850 0.6505 + 0.1357 NaN =+ NaN
Regularizer V) Output 4~discounted distance Fl@w) 2 f(y) 14915 + 0.0127 0.4983 + 0.0160 NaN = NaN
Output 7-discounted distance via sigmoid o(-) W‘i(ky) 2 o(f(z,y)) 1.4829 + 0.0153 0.5084 + 0.0029 NaN £ NaN

Output distance d(z,y) 2 f(z)Tg(y) 2633.7907 =+ NaN 11.3879 = NaN NaN =+ NaN

Asym. Dot Products Output distance via exp(-) 4](.%.3/) 2 exp(f(x)Tg(y)) NaN =+ NaN NaN =+ NaN NaN =+ NaN
(without Triangle Inequality Output distance via squaring a — a? d(z,y) 2 (f(z)Tg(y))? 339.1550 =+ 0.0022 7.8948 x 10" 4 7.4010 x 10'"" NaN = NaN
Regularizer) Output 7-discounted distance HAED) & ()T g(y) 26920 + 1.2655 0.7062 + 0.2156 NaN =+ NaN
Output ~-discounted distance via sigmoid o(-) 44@% 2 o(f(2)Tg(y)) 182.2068 =+ 1.2382 oo =+ NaN NaN £ NaN

Output distance d(z,y) 2 f(2)Tg(y) 9.9748 x 10° + NaN 8.1867 + NaN NaN + NaN

Asym. Dot Products Output distance via exp(-) d(z,y) 2 exp(f(x)Tg(y)) NaN + NaN NaN = NaN NaN =+ NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(z)"g(y))? 339.1560 + 0.0010 6.8658 x 10'! + 3.4985 x 10" NaN + NaN
Regularizer Weight = 0.3) Output y-discounted distance Ad@9) 2 f(2)Tg(y) NaN + NaN NaN = NaN NaN =+ NaN
Output 7-discounted distance via sigmoid o(-) 749 £ o(f(x)Tg(y)) 183.3337 =+ 1.0384 oo + NaN NaN = NaN

Output distance d(z,y) 2 f(x)Tg(y) NaN =+ NaN NaN + NaN NaN + NaN

Asym. Dot Products Output distance via exp(+) d(z,y) 2 exp(f(x)Tg(y)) NaN =+ NaN NaN =+ NaN NaN =+ NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(2)Tg(y))? 339.1552 £ 0.0021 7.4588 x 10'' £ 3.7277 x 10'"" NaN £ NaN
Regularizer Weight =1)) (11 _discounted distance Adew) & f ()T g(y) NaN + NaN NaN =+ NaN NaN + NaN
Output 7-discounted distance via sigmoid o(-) 74@¥) £ o(f(x)Tg(y)) 191.0928 =+ 9.7137 oo + NaN NaN =+ NaN

Output distance d(z,y) 2 f(z)Tg(y) NaN =+ NaN NaN £ NaN NaN £ NaN

Asym. Dot Products Output distance via exp(-) d(z,y) £ exp(f(x)Tg(y)) NaN + NaN NaN = NaN NaN =+ NaN
(Triangle Inequality Output distance via squaring a — a* d(z,y) 2 (f(2)Tg())? 339.1556 + 0.0020 9.0283 x 10'! £ 6.0203 x 10" NaN =+ NaN
Regularizer Weight = 3) Output y-discounted distance 74(1”1) 2 f(z)Tg(y) NaN + NaN NaN =+ NaN NaN =+ NaN
Output v-discounted distance via sigmoid o(-) 7‘?(*&) 2 0(f(x)Tg(y)) 228.0300 =+ 37.0632 oo & NaN NaN £ NaN

Euclidean space d(z,y) 2 || f(@) = F@)ll, 1.3131 =+ 0.0671 0.4833 =+ 0.0128 NaN = NaN

Metric Embeddings £y space 4?(.%.3/) 2 f(@) = fWll i 3.5993 =+ 1.5986 0.7787 + 0.1842 NaN =+ NaN
Spherical distance space w/ learnable scale o d(w,y) £ a - arccos(ASLLBE) 67731 + 0.1915 1.0829 + 0.0177 NaN + NaN

Mixing above three spaces w/ learnable weights 2.1014 =+ 0.0685 0.5923 + 0.0109 NaN =+ NaN

DeepNorms 3-layer 128-width 8.0192 + 0.2476 1.1834 =+ 0.0213 NaN =+ NaN
3-layer 512-width 5.4366 + 0.0855 0.9666 =+ 0.0072 NaN =+ NaN

32-component (each of size 32) 3.0841 =+ 0.0667 0.7272 =+ 0.0068 NaN =+ NaN

WideNorms 48-component (each of size 32) 3.0438 +0.1322 0.7247 £ 0.0173 NaN = NaN
128-component (each of size 32) 2.9964 =+ 0.1363 0.7173 + 0.0166 NaN =+ NaN

Table B.2: Metric learning on the large-scale undirected Youtube graph. This graph does not
have unreachable pairs so the last column is always NaN.

291

(w.r.t. discounted distance MSE). While PQE-GG has larger discounted distance MSE
than some other baselines, it accurately predicts finite distances and outputs large
values for unreachable pairs. On the undirected Youtube graph, perhaps as expected,
metric embedding methods have an upper hand, with the best performing method
being an Euclidean space embedding. Notably, DeepNorms and WideNorms do much

worse than PQEs on this symmetric graph.

Offline Q-Learning

As shown in Proposition B.1.4 and Remark B.1.5, we know that a quasimetric is
formed with the optimal goal-reaching plan costs in a MDP M = (S, A, R,P,~)
where each action has unit cost (i.e., negated reward). The quasimetric is defined on
X 2SU(SxA).

Similarly, Tian et al. (2020a) also make this observation and propose to optimize
a distance function by Q-learning on a collected set of trajectories. The optimized
distance function (i.e., Q-function) is then used with standard planning algorithms
such as the Cross Entropy Method (CEM) (De Boer et al., 2005). The specific
model they used is an unconstrained network f: (s,a,s’) — R, outputting discounted
distances (Q-values).

Due to the existing quasimetric structure, we explore using PQEs as the distance
function formulation. We mostly follow the algorithm in Tian et al. (2020a) except

for the following minor differences:

e Tian et al. (2020a) propose to sample half of the goal from future steps of the
same trajectory, and half of the goal from similar states across the entire dataset,
defined by a nearest neighbor search. For simplicity, in the latter case, we instead

sample a random state across the entire dataset.

e In Tian et al. (2020a), target goals are defined as single states, and the Q-learning

formulation only uses quantities distances from state-action pairs (s,a) € S x A

~

to states s’: d((s,a),s).
However, if we only train on d((s,a),s'), quasimetric embeddings might not

292

1.01

0.8

P[success]

0.2

0.0

o
o
f

o
IS
A

learn much about the distance to state-action pairs, or from states, because it
may simply only assign finite distances to d((s, a), s'), and set everything else to
infinite. To prevent such issues, we choose to use state-action pairs as target
goals, by adding a random action. Then, the embedding methods only need to

embed state-action pairs.

In planning when the target is actually a single goal s’ € S, we use the following

distance /Q-function

d((s,a),5) 2 —1+ % S d((s,0), (',). (B.192)

| |a/eA

Such a modification is used for all embedding methods (PQEs, metric embeddings,
asymmetrical dot products). For unconstrained networks, we test both the

original formulation (of using single state as goals) and this modification.

Unconstrained Network
—— Asym. Dot Product
—— Metric Embedding
—— DeepNorm

—— WideNorm

0 200 400 600 800 1000
Number of Training Trajectories

Figure B-10: Grid-world offline Q-learning average planning success rates in the environment
shown right.

Environment. The environment is a grid-world with one-way doors, as shown in of

Figure B-10, which is built upon gym-minigrid (Chevalier-Boisvert et al., 2018) (a

project under Apache 2.0 License). The agent has 4 actions corresponding to moving

towards 4 directions. When it moves toward a direction that is blocked by a wall or

293

an one-way door, it does not move. States are represented as 18-dimensional vectors,
containing the 2D location of the agent (normalized to be within [—1,1]?). The other
dimensions are always constant in our enviroment as they refer to information that
can not be changed in this particular environment (e.g., the state of the doors). The
agent always starts at a random location in the center room (e.g., the initial position
of the red triangle in Figure B-10). The environment also defines a goal sampling
distribution as a random location in one of the rooms on the left or right side. Note
that this goal distribution is only used for data collection and evaluation. In training,
we train goal-conditional policies using the goal sampling mechanism adapted from

Tian et al. (2020a), as described above.

Training trajectories. To collect the training trajectories, we use an e-greedy
planner with groundtruth distance toward the environment goal, with a large e = 0.6.

Each trajectory is capped to have at most 200 steps.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)
use 18-2048-2048-2048-1024 network with ReLU activations and Batch Normalization
(Toffe and Szegedy, 2015) after each activation, mapping a 18-dimensional state to
four 256-dimensional latent vectors, corresponding to the embeddings for all four
state-action pairs. Unconstrained networks use a similar architecture and take in
concatenated 36-dimensional inputs. With the original formulation with states as goals,
we use a 36-2048-2048-2048-256-4 network to obtain a R output, representing the
distance /Q-values from each state-action pair to the goal; with the modified formulation
with state-action pairs as goals, we use a 36-2048-2048-2048-256-16 network to obtain

a RHAXIAL gutput.

Training. We use 1024 batch size with the Adam optimizer (Kingma and Ba,
2014), with learning rate decaying according to the cosine schedule without restarting
(Loshchilov and Hutter, 2016) starting from 10~ to 0 over 1000 epochs. Since we are
running Q-learning, all models are optimized w.r.t. MSE on the v-discounted distances,

with v = 0.95. When running with the triangle inequality regularizer, 341 ~ 1024/3

294

triplets are uniformly sampled at each iteration.

Planning details. To use the learned distance/Q-function for planning towards a
given goal, we perform greedy 1-step planning, where we always select the best action
in A according to the learned model, without any lookahead. In each of 50 runs, the
planner is asked to reach a goal given by the environment within 300 steps. The set
of 50 initial location and goal states is entirely decided by the seed used, regardless of

the model. We run each method 5 times using the same set of 5 seeds.

Full results. Average results across 5 runs are shown in Figure B-10, with full
results (with standard deviations) shown in Figure B-11. Planning performance across
the formulations vary a lot, with PQEs and the Euclidean metric embedding being
the best and most data-efficient ones. Using either formulation (states vs. state-action
pairs as goals) does not seem to affect the performance of unconstrained networks.
We note that the the asymmetrical dot product formulation outputting discounted
distance is similar to Universal Value Function Approximators (UVFA) formulation
(Schaul et al., 2015); the unconstrained network outputting discounted distance with

states as goals is the same formulation as the method from Tian et al. (2020a).

295

0.75
0.50
0.25
0.00

0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25

1.00
0.75
0.50
0.25
0.00

0.75
0.50
0.25
0.00

Figure B-11: Grid-world offline Q-learning full results. Individual plots on show standard

PQE-LH

0.75

0.50

0.25

0.00

0 250 500 750 1000

DeepNorm
(3-layer 128-width)

DeepNorm
(3-layer 64-width)

WideNorm
(128-component)

WideNorm
(32-component)

WideNorm
(48-component)

1.00 1.00{ 1.00
0.75 0.754 0.75
0.50 0.50 0.50
025 0.251 025
= | o000 = | |l EEE=———| 000
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Unconstrained Net
State as Goals
(Output Distance)

Unconstrained Net
State as Goals
(Output Distance via exp)

Unconstrained Net
State as Goals
(Output Distance via Square)

Unconstrained Net
State as Goals
(Output y-Discounted Distance)

Unconstrained Net
State as Goals
(Output y-Discounted Distance
via Sigmoid o)

1.00 1.00 1.00 4 1.00

075 0.75 0.751 0.75

0.50 0.50 0.50- 0.50

025 0.251 025

0.00 =——— = | jo{2mEm=———— | (0 B —
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Unconstrained Net
State as Goals
(Output Distance)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State as Goals
(Output Distance via exp)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State as Goals
(Output Distance via Square)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State as Goals
(Output y-Discounted Distance)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State as Goals
(Output y-Discounted Distance
via Sigmoid o)

A-ineq. Reg. Weight =0.3

1.00 1.00 1.00 4 1.00
0.75 0.75 0.751 075
050 0.50 0.50 0.50
025 0.25 0.251 025
0.00 0.00 — | 000 .00 | EEEEEE————
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Unconstrained Net
State as Goals
(Output Distance)
A-ineq. Reg. Weight =1

Unconstrained Net
State as Goals
(Output Distance via exp)
A-ineq. Reg. Weight =1

Unconstrained Net
State as Goals
(Output Distance via Square)
A-ineq. Reg. Weight =1

Unconstrained Net
State as Goals
(Output y-Discounted Distance)
A-ineq. Reg. Weight =1

Unconstrained Net
State as Goals
(Output y-Discounted Distance
via Sigmoid o)

A-ineq. Reg. Weight =1

1.00 1.00 1.00 A 1.00
0.75 0.75 0.754 0.75
0.50 0.50 0.50 0.50
0.25 / 0.25 0.254 0.25 /
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Unconstrained Net
Unconstrained Net Unconstrained Net Unconstrained Net Unconstrained Net Stat‘e as Goals '
State as Goals State as Goals State as Goals State as Goals (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3
1.00 1.00 1.00 A 1.00
0.75 0.75 0.754 0.75
0.50 0.50 0.50 1 0.50
0.25 0.251 0.25
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Unconstrained Net
Unconstrained Net Unconstrained Net Unconstrained Net Unconstrained Net State-Action as Goals
State-Action as Goals State-Action as Goals State-Action as Goals State-Action as Goals (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
1.00 1.00 1.00 1.00
0.75 0.75 0.759 0.75
0.50 0.50 0.50 0.50
0.25 0.25 0.251 0.25
———— | o0 YR —— —— | 0.001 ——| o000 = ——
0 250 500 750 1000 [250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

deviations.

296

1.0

0.5

0.0

1.0

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

Unconstrained Net
State-Action as Goals
(Output Distance)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State-Action as Goals
(Output Distance via exp)
A-ineg. Reg. Weight =0.3

Unconstrained Net
State-Action as Goals
(Output Distance via Square)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State-Action as Goals
(Output y-Discounted Distance)
A-ineq. Reg. Weight =0.3

Unconstrained Net
State-Action as Goals
(Output y-Discounted Distance
via Sigmoid o)

A-ineq. Reg. Weight =0.3

1.04 1.0 1.0 1.04
0.51 0.5 0.5 0.51
L é § — L — m——n
T T T T T T T T T 0.0 T T T T 0.0 T T T T T 0.0 T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Unconstrained Net
Unconstrained Net Unconstrained Net Unconstrained Net Unconstrained Net State»A_ction as G0§I5
State-Action as Goals State-Action as Goals State-Action as Goals State-Action as Goals (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1
1.04 1.0 1.0 1.04
0.5 0.5 0.5 0.51
% | = | | t?—__‘:i
T T T T T 0.0 T T T T T 0.0 T T T T T 0.0 T T T T 0.0 1 T T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Unconstrained Net
Unconstrained Net Unconstrained Net Unconstrained Net Unconstrained Net State-Action as Goals
State-Action as Goals State-Action as Goals State-Action as Goals State-Action as Goals (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =3 A-ineqg. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3
1.04 1.0 1.0 1.04
0.51 0.5 0.5 0.51
§ ?4 — L L — c__—gé
T T T T T 0.0 1 T T T T T 0.0 T T T T T 0.0 T T T T T 0.01 T T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Spherical Distance Mixed Space
Euclidean Metric Embedding £, Metric Embedding Metric Embedding Metric Embedding
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Asym. Dot Product
Asym. Dot Product Asym. Dot Product Asym. Dot Product Asym. Dot Product (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
1.04 1.0 1.0 1.04
0.51 0.5 0.5 0.51
———— E———— e L - - L ’A
T T T T T 0.0+ T T T T T 0.0 T T T T T 0.0 T T T T T 0.0 1 T T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 o 250 500 750 1000 0 250 500 750 1000
Asym. Dot Product
Asym. Dot Product Asym. Dot Product Asym. Dot Product Asym. Dot Product (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =0.3 A-ineg. Reg. Weight = 0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight =0.3 A-ineq. Reg. Weight = 0.3
1.0 1.0 1.0 1.0
0.54 0.5 0.5 0.5
N ‘é — .§. ==
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Asym. Dot Product
Asym. Dot Product Asym. Dot Product Asym. Dot Product Asym. Dot Product (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1 A-ineq. Reg. Weight =1
1.04 1.0 1.0 1.04
0.51 0.5 0.5
T T T T T 0.0 T T T T T 0.0 T T T T T 0.0 T T T T T T T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Asym. Dot Product
Asym. Dot Product Asym. Dot Product Asym. Dot Product Asym. Dot Product (Output y-Discounted Distance
(Output Distance) (Output Distance via exp) (Output Distance via Square) (Output y-Discounted Distance) via Sigmoid o)
A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3 A-ineq. Reg. Weight =3
1.04 1.0 1.0 1.04
0.54 0.5 0.5 0.51
= = | eol e 00, 'ﬁ. — = ———
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Figure B-11: Grid-world offline Q-learning full results (cont.). Individual plots on show
standard deviations.

297

B.5 Deriving IQE From PQE

Here we will derive IQE via modifying the PQE-LH formula to scale linearly with

latent (i.e., to have latent positive homogeneity).

Recall the PQE-LH formula:

dpQe-Lh(u, v; @) ZO" (1 —exp(— (ui; — vi;) ™). (B.193)
J

To make it scale linearly with latents, we must avoid the exponentiation transform
on latent vector values, and instead use the latent vector to control a linear quantity.
Therefore, we will reformulate the outer sum as an integral, and use latent vector to

indicate where the summand (now integrand) has non-zero values.

First, we reformulate Equation (B.193) with an integration without weighting (by
«), and obtain PQE-LH:

dlntegraI—PQE—LH (U, U) = /(1 - exp(— Z(h] (U, :L‘) - hj(v; ZL‘))+>) dz. (B194)
r J
PQE-LH is derived by considering processes only activated on sets of the form

. ' _ . _ c ifx>u
[z,00) (half-lines). Inspired by this choice, we consider h;(u;x) =)

0 otherwise

for some ¢ > 0.

Then

integral-PQE-LH (U, V; €) = /(1 —exp(—c- |{j: = € [u;, max(u;,v;)]}|)de. (B.195)

T

Take ¢ — 00, we have

dlntegral-PQE-LH (U, U) = /]—Hj,xe[uj,max(uj,vj)} dw (B196)

— U [u;, max(uj, v;)]|,

J

(B.197)

298

which is exactly the IQE component.

Then, for expressivity, we combine several such components and obtain IQEs.

B.6 Proofs for Section 3.6: Interval Quasimetric Em-
beddings (IQEs)

Theorem 3.6.1. e Proof for IQE-maxmean.

At | = 1, IQE-maxmean formula can exactly recover the MRN asymmetrical
component dysym. By Theorem 2 of Liu et al. (2022), (f1,dasym) can exactly

represent d for some f;. Therefore, the same results apply to diQe-maxmean-

e Proof for IQE-sum.

For d\qe-sum, We present a novel construction that allows it to represent any
quasipartition, and thus any convex combination of quasipartitions. Then, by
Lemma B.3.5, some convex combination of quasipartitions admits a O(¢ log? n)

embedding.

WLOG, consider any quasipartition 7 represented as an order embedding g: X —
[n]™. That is,

0 if g(u) < g(v) coordinate-wise
m(u,v) = ()) (B.198)

1 otherwise.

Consider vectors e; € {0, 1}", where only the first ¢ dimensions are 0’s, and the
rest are 1’s. These vector nicely connect the IQE component structure (union of
intervals) with the order embedding structure (conjunction over coordinate-wise

comparisons).

For any latent u, v and any i € [m)],

[(eguu))i> max((eg,(u)s (€g,0))5)] = (B.199)
1 [0,1] otherwise.

n %] if g;(u) < g;(v)
]:

299

Construct mapping

flu) = [€g1(u) 1 gau) 1 -+ 1 eg () € {0,137, (B.200)

where :: denotes concatenation.

Then, for any latent u, v,

[fiu), max(fi(w), fi(v))] =

1 [0,1] otherwise.

n o if g(u) < g(v) coordinate-wise
]:

(B.201)

By using scaled f, each IQE component can thus represent arbitrary scaled
quasipartition. Thus IQE-sum can exactly represent any convex of quasiparti-
tions using a polynomial-sized neural encoder.

]

Theorem 3.6.2. In proof of Theorem 3.6.1, a reduction from MRN asymmetrical part
to IQE-maxmean is given. The same reduction can be applied here. Invoking Theo-

rem 2 of Liu et al. (2022) leads to the desired result. O

Theorem 3.6.3. MRN approximation results (same as Theorems 3.6.1 and 3.6.2) are
proved showing that an asymmetric norm (i.e., semi-norm) universally approximate
quasimetrics (Theorem 2 of Liu et al., 2022). Deep Norm and Wide Norm can ap-
proximate any semi-norm (Theorem 2 of Pitis et al., 2020) and thus have the same

properties.]

300

Appendix C

Proofs, Details, and Additional

Discussions for Chapter 4

C.1 Discussions and Generalizations of QRL

Self-Transitions are in fact already handled by the QRL objective presented in this
paper (Equations (4.6) and (4.12)). For any state s (with or without self-transition),
we have V*(s;s) = 0, since the optimal cost to first reach s start from s is given by
the empty trajectory. This is naturally enforced by our value function model —dj,
since it is enforced to be a quasimetric. For self-transitions (s, a, s,r) in the training
data (where r < 0 is the reward), their contribution to the constraint loss term will
always be relu(dy(s,s) + r)? = relu(0 + r)? = relu(r)? = 0> = 0. Therefore, the
constraints are inherently satisfied for self-transitions. So our theoretical results from

Section 4.3.1 also hold for such cases.

Constant Costs. In many cases (and most goal-reaching benchmarks), each envi-
ronment transition has a fixed constant cost C'. In other words, the task is to reach
the given goal as quickly as possible. Then, in the QRL constrained optimization,
we can drop the relu(-) and essentially, since we know that —V*(s;s’) = C for sure,
and thus we should have dy(s,s") = C. Technically speaking, the relu(-) formulation

should be able to find the same solution. In our experience, even when it is known

301

that the transition cost is constant, adding this information in the objective, i.e.,

removing relu(-), does not significantly change the results.

General Goals (Sets of States). We can easily extend QRL to general goals,
which are sets of states. Let G C S be such a general goal. We augment our models to
operate not just on S, but on S|J{G} (which can be simply achieved by, e.g., adding
an indicator dimension). When we encounter transition that ends within some s’ € G,

we simultaneously add a transition (s’, G) to the dataset.

C.2 Proofs

C.2.1 Theorem 4.2.1: Value-Quasimetric Equivalence

Proof of Theorem 4.2.1. We have shown already —V* € Qmet(S). (See also Propo-
sition B.1.4.)

For any d € Qmet(S), define

lI>

A=S
)

lI>

P(s, Sact) Sact (0, is the Dirac measure at x)

R(s,s') & —d(s,).
Then the optimal value of (S, A, P, R) is —d, regardless of discounting factor (if any).

For the on-policy values, consider action space A = {dself, Gnext}- Assume that

state-space |S| > 2. Let s1, S2, 3 be three distinct states in S, all transitions have

302

reward —1, and

(317 aself) - 551
(527 aself) - 552
P(s3, Gself) = s, (ase is always a self-transition)
(317 anext) - 582
(327 anext) - 553
P(s3, Gnext) = 0, (@next gOES to the next state cyclically)
(815 82) = Oapee (7 always takes apex when tasked to go to sy from sq)
(827 3) = 5anext
(817 SQ) 5ase|f'
So
—V™(s1;80) = —=V7(s9;83) =1
—V7™(s3;81) = 00,
violating triangle-inequality. O]

C.2.2 Theorem 4.3.1: Exact Recovery

Proof of Theorem 4.3.1. Since the transition dynamics is deterministic, we can say

that states sg is locally connected to state s; if 3a € A such that P(s; | sp,a) = 1.

th path _path th .
We say a path (sf, 870,85, ..., 8% ") connects sg to sy if
th
sp? = s

7" is locally connected to s, Vi€ {0,1,...,T — 1}

th
ST = 5.

303

And we say the total cost of this path is the total rewards over all T — 1 transitions,
r.e., T'—1.
From the definition of V* and Theorem 4.2.1, We know that,

—V* € Qmet(S)

—V™*(s;g) = total cost of shortest path connecting s to g, Vs, g.

Therefore, the constraints stated in Equation (4.9) is feasible. The rest of this
proof focuses only on dy’s that satisfy the constraints, which includes —V*.

Due to triangle inequality, we have Vs, g,
dy(s,g) < total cost of shortest path connecting s to g = —V*(s; g). (C.1)
Therefore,
Esgldo(s, 9)] < By g[=V"(s79)], (C.2)

with equality iff dy(s,g) = —V*(s; g) almost surely.
Hence, dp+(s,g) = —V™*(s;g) almost surely.

C.2.3 Theorem 4.3.2: Function Approximation

We first state the more general and formal version of Theorem 4.3.2.

Theorem C.2.1 (Function Approximation; General; Formal). Assume that
S is compact and V* is continuous.

Consider a quasimetric model family that is a universal approximator of Qmet(S)
in terms of L, error (e.g., IQE (Section 3.6) and MRN (Liu et al., 2022)). Concretely,

this means that Ve > 0, we can have {dée)}g such that, there exists some § where
Vso, 51 € S, dég)(so, s1) + V(so;s1)| < e (C.3)

Now for some small € > 0, consider solving Equation (4.9) over {d((;/ 2)}9 with the

304

relaxed constraint that
V(s,a,s',r) transition, relu(dy’”(s,s') +r) <e, (C.4)
then for s ~ Dstate; § ~ Dgoal, and for all & > 0, we have
|do+(s,9) + (1 +€)V(s;9)| € [-6,0],
with probability 1 — O (& - (—E[V*])).
As a special case with § = /¢, we have
P||do-(5,9) + (L+V*(s:9)| € [—V&0)| =1 O (—Ve-E[VY), (C5)

which is exactly Theorem 4.3.2.

Note that the compactness and continuity assumptions ensure that VV* is bounded.

We start by proving a lemma.

Lemma C.2.2. With the assumptions of Theorem C.2.1, there exists a déi/ 2 that

satisfies the constraint with

Vs, g, d/?(s,9) > —V*(s:g). (C.6)

Proof of Lemma C.2.2. Let the underlying MDP of V* be M = (S, A4, P, R). Con-
sider another MDP M = (S, A, P,R —), with optimal goal-reaching value function
V* € Qmet(S).

Obviously, transitions (s, a, s,) in M bijectively correspond to transitions (s, a, s’, r—

$) in M.
For any s and ¢, let s — s; — s — -+ — 5,1 — ¢ be the shortest path

305

connecting s to g in M via n transitions.

—V*(s; g) = total cost of s — 51 — 53 — --- — 5,1 — g according to R — % as reward
(C.7)

n-e .
=5 + total cost of s — 51 — 89 — -+ — s,,_1 — ¢ according to R as reward

(C.8)
> % + total cost of shortest path connecting s to g in M according to R as reward
(C.9)
= % —V*(s;9). (C.10)
Since n > 0 iff s # g, we have
—V*(s; g) > g Lzg — V(55 9), Vs, g. (C.11)
By universal approximation, there exists déi/ ? such that
Vs, g, déi/z)(s,g) +V*(s;9)| < g (C.12)
In particular,
e for s # g, by Equations (C.11) and (C.12), we have
dy/P(s,9) 2 =V"(s19) = 5 = ~V'(s39); (C.13)
e for s = g, by Equation (C.12), we have
dy/?(s,9) = dy/P(s,5) = 0= —V*(s;5) = —V*(s;9). (C.14)

(¢/2)

ot satisfies the

Hence, déi/ 2 > —V* globally. Now it only remains to show that d

constraint.

306

For any transition (s,a,s’,r = R(s,s’)) in M, by Equation (C.12),

A/ (s,8) < =V (s58) + 5 (C.15)
< %—R(s,s’)—i—%

(since s — &' is also a valid path in M with cost 5 — R(s, "))

= —r+e, (C.16)

which means that déi/ 2) satisfies the constraint.

Hence the desired dé?/ ?) exists.

Now we are ready to prove Theorems 4.3.2 and C.2.1.

Proof of Theorems 4.3.2 and C.2.1. Let déi/ ? he the solution to the relaxed problem.
By the definition of the universal approximator, such solutions exist. Moreover, we

have

Vs,g, dy/?(s,9) < —(1+)V*(s;9), (C.17)

by the constraint and triangle inequality.
Define
p 2 Pdy/P(s,9) < —(1+€)V*(s;9) — 4. (C.18)

Then
Eldy/?(s,9)] < —(1+ ©)E[V*(s; g)] — pd, (C.19)

where we used Equations (C.17) and (C.18).
Let déi/ ? be the quasimetric from Lemma C.2.2. Then, by optimality, we must

have

Eldy/? (s, 9)] > E[dy/? (s,)] = —E[V*(s; 9)]- (C.20)

Combining Equations (C.19) and (C.20), we have

—(1+E[V*(s;9)] —pd = —E[V"(s; 9)]. (C.21)

307

Rearranging the terms, we have
(=E[V*)). (C.22)

Combining Equations (C.17) and (C.22) gives the desired result. O

C.3 Experiment Details and Additional Results

All our results are aggregation from 5 runs with different seeds.
We first discuss general design details that holds across all settings. For task-specific

details, we discuss them in separate subsections below.

QRL. Across all experiments, we use € = (.25, initialize Lagrange multiplier A = 0.01,
and use Adam (Kingma and Ba, 2014) to optimize all parameters. A is optimized
via a softplus transform to ensure non-negativity. Our latent transition model T is

implemented in a residual manner, where
T(Za G) = g¢(Z, &) + 2z, (C23>

and g4 being a generic MLP with weights and biases of the last fully-connected layer
initialized to all zeros. Unless otherwise noted, all networks are implemented as simple
ReLU MLPs. pgate is taken to be the beginning state of a random transition sampled
from dataset / replay buffer. Unless otherwise noted, pgoal is taken to be the resulting
state of a random transition sampled from dataset / replay buffer. For maximizing dy,

unless otherwise noted, we use the strictly monotonically increasing convex function

é(x) 2 —softplus(500 — z, B = 0.01) = —100 x softplus(5 — 1%). (C.24)

MSG. We follow the authors’suggestions, use 64-critics, and tune the two regularizer
hyperparameters over a € {0,0.1,0.5,1} and g € {—4, —8}. For other hyperparame-

ters, we use the same default values used in the original paper (Ghasemipour et al.,

308

2022).

C.3.1 Discretized MountainCar

Discretization. MountainCar state is parametrized by position € [—1.2,0.6] and
velocity € [—0.07,0.07]. For a dimension with values in interval [[, u], we consider 160

evenly spaced bins of length (u — [)/159, with centers being

u—1
[k:k=012....1 . 2
{+159x o,,,,59} (C.25)

After each reset and transition, we discretize each dimension of the state vector, so
that future dynamics start from the discretized vector. To discretize a value, we find
the bin it falls into, and replace it with the value of bin center. Note that the two
bins at the two ends are centered at uw and [, respectively. So the two ends are exactly

represented. Discretizing each dimension this way leads to 160 x 160 discrete states.

Data. In MountainCar, the original environment goal (top of hill) is a set of states
with position € 0.5, 0.6] and velocity € [0,0.07], where the agent is considered reaching
that goal if it reaches any of those states. We adapt QRL and other goal-reaching
methods to support this general goal following the procedure outlined in Appendix C.1.
Specifically, we augment the observation space to include an additional indicator
dimension, which is 1 only when representing this general goal. In summary, any
original (discretized) state s £ [u,v] becomes § £ [u,v,0], and G = [0.5,0, 1] refers to
this general goal. All critics and policies now takes in this augmented 3-dimensional
vector as input. For each encountered state § that falls in this set, a new transition
(5,G) is added to the offline dataset. The dataset includes 240 such added transitions
and 199,888 transitions generated by running a random actor for 1,019 episodes, where

each episode terminate when the agent reaches top of hill or times out at 250 timesteps.

Evaluation. For each target goal, we evaluate the planning performance starting

from each of 160 x 160 states, with a budget of 200 steps. At each step, the agent

309

receives —1 reward until it reaches the goal. The episode return is then averaged over
160 x 160 states to compute the statistics. For the task of planning towards 9 specific
states, we say that agent reaches the goal if it reaches a 13 x 13 neighborhood centered
around the goal state, and average the metrics over 9 target goal states. For QRL
and Q-Learning, we did not train any policy network. Instead, the agents take the

action that maximizes Q value (or minimizes distance) for simplicity.

Goal Distribution. For all multi-goal methods, wherever possible, we adopt a

goal-sampling distribution as following: for sgeai ~ Dgoal,

resulting state from a random transition ~ with probability 0.95
Sgoal = (C26)

[0.5,0,1] with probability 0.05.

QRL. We use 3-1024-1024-1024-256 network for f and (256+3)-1024-1024-1024-256
residual network for T', where 3 represents the one-hot encoding of 3 discrete actions.
For dy, we use a 256-1024-1024-1024-256 projector followed by an IQE-maxmean head
with 16 components, each of size 32. Liansition 18 Optimized with a weight of 75. Our
learning rate is 0.3 for A and 5 x 10™* for the model parameters. We use a batch size
of 4096 to train 5 x 10° gradient steps. For all parameters except \, we used cosine

learning rate scheduling without restarting, decaying to 0 at the end of training.

Q-Learning. We use 2-1024-1024-1024-1024-1024-1024-3 networks for vanilla Q-
Learning, where x = 3 in the single-goal setting, and x = 6 in the multi-goal setting.

The 3 outputs represents estimated QQ values for all 3 actions.

Q-Learning with Quasimetrics. We use the same encoder and projector ar-
chitecture as QRL, as well as the same IQE specification. Additionally, to model
the Q-function, we also add a 256-1024-1024-1024-(3x256) transition model (which
outputs the residual for each of the 3 actions), and adopt QRL’s transition loss with
a weight of 5. In other words, we replace the QRL’s value learning objective with

the Q-Learning temporal-difference objective (and keep the transition loss). We use

310

a discount factor of 0.95, and update the target (Q model every 2 iterations with a
exponential moving average factor of 0.005. We use a learning rate of 0.001 and a

batch size of 4096 to train 5 x 10° gradient steps.

Contrastive RL. We mostly follow the author’s parameters for their offline exper-
iments, using 2-1024-1024-1024-d, encoders, where = = (3 + 3) for the state-action
encoder, x = 3 for the goal encoder, and d. is the latent dimension. We tune
d, € {16,64} and choose 64 for better performance. The policy training is modified
to compute exactly the expected Q-value (rather than using a reparametrized sample)
from the policy’s output action distribution, to accommodate the discrete action space.
Since the dataset is generated from a random actor policy, we disable the behavior
cloning loss. We train over 10° gradient steps using a batch size of 1024. We note that
Contrastive RL requires a specific goal-sampling distribution, which we use instead of

Pgoal from Equation (C.26).

Contrastive RL with Quasimetrics. We use the same encoder and projector
architecture as QRL, as well as the same IQE specification. Similar to Q-Learning,
we also add a residual transition model, which uses the same (256+3)-1024-1024-256
architecture as QRL’s transition model, and adopt QRL’s transition loss with a weight
of 5. In other words, we replace the QRL’s value learning objective with the contrastive
objective from Contrastive RL (and keep the transition loss). Contrastive RL objective
estimates the on-policy Q-function with an extra goal-specific term determined by pgoai
(Eysenbach et al., 2022). Thus, we also learn a 256-1024-1024-1 model ¢(z,), where z,
is the latent of goal g. Contrastive RL loss is computed with the sum of ¢(z,) and
quasimetric output. Other hyperparameters are identical to the vanilla Contrastive

RL choices.

MSG. We follow the original paper and tune a € {0,0.1,0.5,1} and 5 € {—4, —8}.
After tuning, we select « = 0.1, = —4 for both the single-goal and multi-goal setting.
For relabelling, we find using random goals hurting performance. Hence, instead of

Pgoal from Equation (C.26), we use [0.5, 0.5, 1] with probability 0.05, and a future state

311

from the same trajectory with probability 0.95, where the future state is taken to be
At > 1 steps away, where At ~ Geometric(0.3).

Diffuser. Diffuser’s training horizon defines the length of trajectory segment used
in training. Any trajectory with length shorter than this number won’t be sampled
at all for training. We tune the training horizon between 16 (which includes almost
all training trajectories) and 200 (which excludes shorter trajectories from training
but may better capture long-term dependencies), and choose 16 due to its better

performance in both evaluations.

C.3.2 Offline d4rl maze2d

Evaluation. For each method, we evaluate both single-goal and multi-goal planning

over 100 episodes.

QRL. We use 4-1024-1024-1024-256 network for f and (256+2)-1024-1024-1024-256
residual network for 7', where 2 is the action dimension. For dy, we use a 256-1024-
1024-2048 projector followed by an IQE-maxmean head with 64 components, each
of size 32. Liansition 1S optimized with a weight of 1. Our learning rate is 0.01 for
A, 5 x 107* for the critic parameters, and 3 x 107° for the policy parameters. We
use a batch size of 4096 to train 2 x 10° gradient steps. Inspired by Contrastive RL
(Eysenbach et al., 2022), we augment policy training with an additional behavior
cloning loss of weight 0.05 (towards a goal that is At > 1 steps in the future from the
same trajectory, for At ~ Geometric(0.99)).

Contrastive RL. We mostly follow the author’s parameters for their offline exper-
iments, using 2-1024-1024-1024-16 encoders, where x = (4 4 2) for the state-action
encoder, and x = 4 for the goal encoder, and d. is the latent dimension, as well as
a behavior cloning loss of weight 0.05. We train over 1.5 x 10 gradient steps using
a batch size of 1024. We note that Contrastive RL requires a specific goal-sampling

distribution, which we use instead of pgoq from Equation (C.26).

312

MSG. For single-goal results, we report the evaluations from the original paper.
For multi-goal tasks, we use the same architectures with relabelling, and tune o €
{0,0.1,0.5,1} and 8 € {—4, —8}, following the procedure from original paper. After
tuning, we use a = 0.1 and 8 = —8 for the large maze, a = 0.5 and = —4 for the
medium maze, and o = 0.1 and § = —8 for the umaze maze. For relabelling, we sample
goal state a future state from the same trajectory, where the future state is taken to

be At > 1 steps away, where At ~ Geometric(0.3).

MPPI with QRL Value. We run MPPI in the QRL’s learned dynamics and value
function with a planning horizon of 5 steps, 10,000 samples per step, and the QRL Q-
function (via the QRL dynamics and value function) as reward in each step. The noise
variance to sample and explore actions is 02 = 1. We experimented A\ € {0.1,0.01}, a
regularizer penalizing the cost of control noise, and use A = 0.01 due to its slightly

superior performance.

Diffuser. We strictly follow the original paper’s parameters for maze2d experiments.
For planning with sampled actions, each Diffuser sample yields many actions, so we
replan after using up all previously sampled actions (similar to open-loop planning).
In our experience, replanning at every timestep is extremely computationally costly
without observed improvements. For QRL value planning, we guide Diffuser sampling
for minimizing the learned quasimetric distance towards goal state (in addition to its
existing goal-conditioning) with a weight of 0.1 over 4 guidance steps at each sampling
iteration. Since each Diffuser sample is a long-horizon trajectories refined over many
iterations, guiding at each timestep of the trajectory is computationally expensive.
Therefore, we gather state-action pairs from every 5 timesteps as well as the last step
of the trajectory, and feed these pairs into learned QRL value function to compute

the average QRL values as guidance.

313

FetchReach - State FetchReach - Image FetchPush - State FetchPush - Image FetchSlide - State

A 1.0

. ﬁ 0.8 0.8
,/,N,,...,

AL et

0.0 0.0 0.0 0.0 sty
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 0.0 02 04 06 08 L0

H
o
-
o

Success Rate
o o o
= o
o o o
IS o ©
o o
»~ o

o
o
)
o
)
o

Environment Steps ~ 1€6 Environment Steps ~ 1€6 Environment Steps 1€6 Environment Steps 1e6 Environment Steps ~ 1e6
. . . Goal-Conditioned DDPG + HER + Quasimetric (MRN) DDPG + HER + Quasimetric (IQE)
— Quasimetric RL Contrastive RL —— gehavior Cloning (GCBC) — PPPG+HER —— (Method by Liu et al. (2022) " (Method by Liu et al. (2022))
DDPG + HER + Quasimetric (IQE) __ Contrastive RL + 2 Critics + Exploration Noise Contrastive RL + 2 Critics + Exploration Noise + Entropy Reg.
(Another method to add quasimetrics; see text) (Ablation only run on State environments; see text) (Ablation only run on State environments; see text)

Figure C-1: Online learning performance on GCRL benchmarks, including an alternative
method to integrate quasimetrics in DDPG and a variant of Contrastive RL trained with two
critics and exploration action noise on state-based settings. No method has access to ground
truth reward function. QRL still consistently outperforms the baseline methods, learning
both faster and better. FetchSlide with image observation is not shown because no method
reaches a non-trivial success rate. See Appendix C.3.3 for details of the additional baselines.

C.3.3 Online GCRL

Environment. For FetchReach and FetchPush, we strictly follow Contrastive RL
experimental setups (Eysenbach et al., 2022) to generate initial and goal states/images.
The image observations are RGB with 64 x 64 resolution. For FetchSlide, we adopt
a similar strategy and generate goal states where object position dimensions are set
to the target location and other dimensions are set to zeros. We are unable to get
any method to reach a non-trivial success rate on FetchSlide with image observation
despite tuning hyperparamteres and image rendering. We thus omit this setting in

results.

Evaluation. We evaluate each method for 50 episodes every 2000 environment steps
(i.e., 40 episodes). Following standard practice, we mark an episode as successful if the
agent completes the task at any timestep within the time limit (50 steps). For clearer
visualizations in Figures 4-5 and C-1, the success rates curves are smoothed with a
sliding window of length 5 before gathering across 5 seeds, similar to visualizations in
(Liu et al., 2022). For comparing sample efficiencies between Contrastive RL and QRL,
we look at the smoothed success rates from both methods, find the sample size where
QRL first exceeds Contrastive RL’s final performance at 10° samples, and compute

the sample size ratio.

314

Processing Image Observations. To process image inputs, all compared methods
use the same backbone convolutional architecture from (Mnih et al., 2013) to encode
the input image into a 1024-dimensional flat vector. We adopt this approach from
Contrastive RL (Eysenbach et al., 2022). For different modules in a method, each
module uses an independent copy of this backbone (of same architecture but different
set of parameters). For modules that takes in two observations (e.g., policy network
in all methods and monolithic Q-functions in vanilla DDPG), the same backbone
processes each input into a flat vector, and the concatenated 2048-dimensional vector
is fed into later parts of the module (which is usually an MLP). Other modules
only take in a single observation and simply maps the processed 1024-dimensional
vector to the output in a fashion similar to the fully-connected head of convolutional
nets (i.e., passing through an activation function and then an MLP). In architecture
descriptions below, we omit this backbone part for simplicity, and use x to denote
the state dimension for state-based observations and backbone output dimension (i.e.,

1024) for image-based observations .

QRL (State-based Observations). We use a 2-512-512-128 network for f and a
(128-+4)-512-512-128 residual network for 7', where 4 is the action dimension. For dy, we
use a 128-512-2048 projector followed by an IQE-maxmean head with 64 components,
each of size 32. We use 2-512-512-8 network for policy, where z is the input size
and 8 parametrizes a tanh-transformed diagonal Normal distribution. Ly ansition 18
optimized with a weight of 0.2. Our learning rates are 0.01 for A, 1 x 10~* for the
model parameters, and 3 x 107> for the policy parameters. We use a batch size of 256
in training. We prefill the replay buffer with 200 episodes from a random actor, and
then iteratively perform (1) generating 10 rollouts and (2) optimizing QRL objective
for 500 gradients steps. We use N(0, 0.3%)-perturbed action noise in exploration. For
the adaptive entropy regularizer (Haarnoja et al., 2018), we regularize policy to have
target entropy —dim(A), where the entropy regularizer weight is initialized to be 1
and optimized in log-space with a learning rate of 3 x 10~%. Since the environment has

much shorter horizon (each episodes ends at 50 timesteps), we instead use a different

315

affine-transformed softplus for maximizing dy, where ¢(z) £ —softplus(15—x, 3 = 0.1).

QRL (Image-based Observations). All settings are the same as QRL for state-

based observations except a few changes:

e We use the convolutional backbone followed by a 2-512-128 network for encoder
I

e We optimize Liransition With an relaxed weight of 0.1 (since the dynamics aren’t

fully deterministic).

e We update the models less frequently with 125 gradient steps every 10 roll-
outs. Contrastive RL uses the same reduced update frequency for image-based
observations (Eysenbach et al., 2022), which we observe also has benefits for

QRL!

Contrastive RL. We strictly follow the original paper’s experiment settings (Ey-
senbach et al., 2022), which does not use two critics or action noise for exploration,
and only uses entropy regularizer for image-based observations. For a comparison, we
also run Contrastive RL with these techniques added on the state-based environments.
As shown in Figure C-1, while they do sometimes improve performance, they do not
completely explain the gap between QRL and Contrastive RL. Hence, the improvement
of QRL over Contrastive RL indeed (partly) comes from fundamental algorithmic
differences. Since Contrastive RL estimates on-policy values, it could be more sensitive
adding exploration noises, which degrades the dataset. QRL, however, is conceptually

exempt from this issue, since it estimates optimal values.

Goal-Conditioned Behavior Cloning (GCBC). We strictly follow the hyper-
parameter setups for the GCBC baseline in the Contrastive RL paper (Eysenbach
et al., 2022).

! This is potentially related to the lost of capacity phenomenon observed generally in RL algorithms
(D’Oro et al., 2023)

316

DDPG + HER. We mostly follow the experiment setup in the MRN paper (Liu
et al., 2022). However, we do not give HER access to reward functions for fair
comparison. Instead, HER relabels transition rewards based on whether the state

equals the target goal state, which is exactly the same reward structure other method

uses (QRL, Contrastive RL and GCBC).

DDPG + HER + Quasimetrics (Method by Liu et al. (2022)). We strictly
follow the MRN paper (Liu et al., 2022) to modify DDPG to include quasimetrics,
which is slightly different from our modifications to Q-Learning on offline MountainCar,
but was also shown to be empirically beneficial in online learning (Liu et al., 2022).
We follow Liu et al. (2022) for MRN hyperparameters, and use the same IQE hyper-
parameters as QRL.

DDPG + HER -+ Quasimetrics (Another method to add quasimetrics).
We show additional results comparing QRL to a different approach to integrate
quasimetrics into DDPG. This approach is different from the one by Liu et al. (2022)
but similar to our modifications to Q-Learning on offline MountainCar that attain
good performance in that task. We adapt the architecture choices by Liu et al. (2022)
and QRL. Specifically, we use a x-512-512-128 network for encoder f and (128+4)-512-
512-128 residual network for T'. For dy, we use a 128-2048-2048-2048 projector followed
by an IQE-maxmean head with 64 components, each of size 32. We adopt QRL’s
transition loss with a weight of 5. In other words, we replace the QRL’s value learning
objective with the DDPG temporal-difference objective (and keep the transition loss).
All other hyperparameters follow the same choices in method by Liu et al. (2022).
This approach performs extremely poorly on this more challenging set of environments,
suggesting that it is unable to scale to more complex continuous-control settings.

As shown in Figure C-1, QRL greatly outperforms both approaches to integrate
DDPG and quasimetrics, showing consistent advantage of the QRL objective over

Q-Learning’s temporal-difference objective.

317

318

Appendix D

Details and Additional Discussions

for Chapter 5

D.1 Denoised MDP Discussions

D.1.1 Loss Derivation

To apply our mutual information regularizer I(x; s | @), we can consider a form using

another variational distribution p (see, e.g., Poole et al. (2019)),

I(z;s|a)= mgnEa]Epg(s\a) [Dki(pe(z | s,a) || p(z | a))]

~ minEoky, sja) [Du(ey(@ | 5,0) || p(z |)]
(assume gy, is roughly the posterior of py)

= min Lii-z(1,0). (D.1)

The assumption that g, is roughly the posterior of py is acceptable because it is the
natural consequence of optimizing the variational MLE objective in Equation (5.1)
over 6, 1.

Alternatively, we can consider the MI defined by a joint conditional distribution
P(x, s | a) not from the forward model py, but from the data distribution and posterior

model gy (x | s,a). This is also sensible because the variational MLE objective in

319

Equation (5.1) optimizes for compatible py and g, that both fit data and consistently
describe (conditionals of) the same underlying distribution. Thus regularizing either
can en