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1 Introduction and motivation

Online shopping has become an important part in our lives over the past

decade. Lots of online reviews datasets are now publicly available, en-

abling numerous text analysis studies. Unlike many of these studies which

focus mainly on words, this project aims to explore the relation among

punctuations in reviews, as well as to gather knowledge on how a piece

of review is written structurally.

1.1 Punctuations as features

When we think about the information conveyed in a piece of text, words

usually first come to our minds. However, there is also great amount of

information hiding in the punctuations. In fact, using punctuations as fea-

tures has several advantages, including:

1. being insensitive to typos1,

2. being less sensitive to language used,

3. expressing strong emotions, and

4. being limited in types, resulting in much smaller sized models.

Therefore, this project aims to analyze texts by solely looking at their punc-

tuations, and to demonstrate how they can reveal important and interesting

insights.

1Misspelling is very common in video game reviews, which makes punctuation features
even more valuable.
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2 Building a model

Before proposing a model, we should think about how a piece of online

review is usually written. Usually, the reviewer starts with an idea whether

this will be a positive review or a negative one, then begins to argue for his

or her point sentence by sentence. Take this online review from Steam2 as

an example3.

Where to start with this game? Well lets just
say the graphics aren’t great and its not not
really an amazing game. However, it is extremely
fun if you know how to play it. With hundreds of
different game modes to choose from, the fun
never ends!
Pros: + High replay value,

+ Price.
Cons: - Mediocre graphics.

Anyway I would recommend anyone buying this
game as it is really cheap, easy to run and
extremely fun!!!!!

The reviewer starts with “Where to start with this game?” as an

opening sentence, continues to describe the impression of the game in three

sentences, then summarizes the pros and the cons, and finally concludes

his review with a recommendation. Each of the sentences here has its own

purpose and role in this review, which we will call “sentence types”.

Figure 1 shows the sentence types we assumed in this review. In fact,

we generally do not know what kinds of and how many different sentence

types exist in the data. Here, these sentence types are artificially labeled to

2Steam is an online platform that sells video games and softwares.
3This review is slightly modified from http://steamcommunity.com/id/

bogsaxe/recommended/4000/.
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illustrate the idea of our model.

Figure 1: Sentence types in the Steam review example.

The concept of sentence type seems very natural. Incorporating this

idea, we can consider this review as a sequence of sentence types gener-

ated from the reviewer’s idea of writing a positive review, and a sequence

of sentences’ text generated from corresponding sentence types. By this

assumption, the review is viewed as structured as in figure 2.

However, to make this idea a concrete model, we still need to specify

how the sentence types are generated given the reviewer’s opinion, and

how the sentence texts are generated given the sentence types.

2.1 Generating sentence types

Sentence types in a review is represented as a sequence of random variables

from a stochastic process. To simplify the model, we model the sequence

3



Figure 2: Structure of the Steam review example.

as a Markov chain by making the following assumptions:

Assumption. There are only finitely many sentence types.

Assumption (Markov property). Given a review being positive or nega-

tive, each of its sentence’s sentence type only depends on that of the previ-

ous sentence, and is independent of its location in the review.

Moreover, we assume a hyperparameter N to represent the number of

sentence types4.

Assumption. With hyperparameter N specified, there are exactly N sen-

tence types in the positive review data, and N in negative review data.

Together with absorbing state representing the end of review, we have

two (N + 1) states Markov chains of sentence types—one for positive re-

views and one for negative reviews. Notice that we don’t force the positive

and negative reviews to share the same set of N sentence types.
4This is similar to how k-means algorithm requires k, the number of clusters, specified

as a hyperparameter.
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2.2 Generating sentence punctuations from sentence type

Similarly, we make the following assumption and model the sentence punc-

tuations given sentence types as from a Markov chain.

Assumption (Markov property). Given a sentence’s sentence type, each of

its punctuation only depends on the previous punctuation, and is indepen-

dent of its location in the sentence.

Fact. There are only finitely many punctuations.

Then we associate each sentence type with a Markov chain, and model

each sentence’s punctuations as generated from its sentence type’s chain.

It is tempting to account for all punctuation marks. But for the model

to be light and consistent with our assumption5, the following set of char-

acters is artificially chosen as the punctuation features.

+ - / , : ; ~ . ? !

1. [, : ; ~ . ? !] are common punctuation marks.

2. [+ -] are often used to list pros and cons, as in the previous example.

3. [/] is commonly used to give a score.

4. Other common punctuation marks such as [’ " ( )] are not in-

cluded because they often appear in pairs and the Markov property

assumption fails if another punctuation appears between the pair.

5e.g., see point 4 below.
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5. Additional Sentence END added at the end indicates end of sen-

tence, also is an absorbing state of the Markov chains.

Figure 3: Example of punctuation sequence extracted from a sentence.

2.3 Identifying sentences

Now we know how sentence types and punctuations are generated. But

how should we break an actual review into sentences? Sometimes review-

ers write fragmented sentences and even use improper punctuations. Thus,

we need to make the following assumptions about sentences.

Assumption. A sentence ends with one or more [. ? !].

Assumption. If a review does not end with [. ? !], we assume an implicit

[.] at the end in order to make the last sentence valid.

Therefore, a sentence should be of the following form:

(
a string without [. ? !]

)
+
(
one or more [. ? !]

)
Finally, we can split a review by using continuous sequences of [. ? !] as

delimiter, and successfully retrieve a list of sentences.
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Notice that these assumptions also enforces several constraints on the

transition and initial probabilities of Markov chains on punctuations. We

will discuss these constrains in the section below.

2.4 Formalizing graphical model

With all assumptions made, we formalize the graphical model:

1. N ∈ Z>0 is a hyperparameter representing number of sentence types

in positive/negative reviews.

2. PN ∈ {positive, negative}.

3. ∀PN, SPN is a set of sentence types of size N.

4. ∀PN, (πPNs ,APNs ) is a (N+1)-state Markov chain over SPN∪ {Review END},

where “Review END” is an absorbing state, πPNs (Review END) = 0.6

5. P = {+ - / , : ; ~ . ? !}, Pend = {. ? !}.

6. ∀PN, ∀s ∈ SPN, (πsp,Asp) is a (|P| + 1)-state Markov chain over P ∪

{Sentence END}, where

(a) ∀p ∈ Pend, ∀p ′ ∈ P \ Pend, Asp(p→ p ′) = 0.

(b) ∀p ∈ P \ Pend, Asp(p→ Sentence END) = 0.

(c) “Sentence END” is an absorbing state.

(d) πsp(Sentence END) = 0.7
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Figure 4: Structural model with punctuation features.

Then, visualization of the model we built is represented in figure 4.

In this model, the parameters are

∀PN, θPN = {(πPNs ,APNs )}∪ {(πsp,Asp) : s ∈ SPN}

If we view the sentences types as hidden variables, and the punctuations as

observed variables, the entire model is essentially a hidden Markov model

(HMM). We can then calculate sentence type posteriors using the forward-

backward algorithm described in the appendix A.

6Reviews can not be empty.
7According to our assumption, sentences must at least have one punctuation in Pend.
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3 Learning the Parameters

With an online review dataset, we want to find maximum likelihood esti-

mation of the parameters.

A crucial observation is that only θpositive affects for positive reviews,

and that only θnegative affects for negative reviews. Therefore, we can safely

split the data into positive and negative reviews, and then learn the mle of

the parameters separately.

Therefore, in this section, the superscript PN will be omitted since the

following discussion applies to either set of parameters.

Notation. Parameters θ = {(πs,As)}∪ {(πsp,Asp) : s ∈ S}.

Notation. s is all sentence types in data s.t. s(i) is the vector of i-th review’s

sentence types.

Notation. p is all punctuations in data s.t. p(i)j,k is the the j-th sentence’s k-th

punctuation in i-th review.

Notation. n(i) is the number of sentences in the i-th review.

Notation. m(i)
ij is the number of punctuations in the j-th sentence of the i-th

review.

Problem. Given punctuation data of n reviews, p = {p(1),p(2), . . . ,p(n)},

find the mle of the parameters θ̂ = arg maxθ log P [p; θ].
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Then, for this model, the quantity of interest in EM is

Es|p;θ ′
[
L(s,p; θ)

]
= Es|p;θ ′

[
log P [s,p; θ]

]
=

n∑
i=1

Es(i)|p(i);θ ′

[
log P

[
s(i),p(i); θ

]]

=

n∑
i=1

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] log P
[
s(i),p(i); θ

]
(1)

We first find

log P
[
s(i),p(i); θ

]
= log P

[
s(i); θ

]
+ log P

[
p(i)

∣∣∣ s(i); θ]
= logπs(s

(i)
1 ) +

ni∑
i=2

logAs(s
(i)
j−1, s(i)j )

+

n(i)−1∑
j=1

logπ
s
(i)
j
p (p

(i)
j,1 ) +

m
(i)
j∑

k=2

logA
s
(i)
j
p (p

(i)
j,k−1,p(i)j,k)


The first term is from the sentence type Markov chain. The second term is

from (n(i) − 1) runs of the punctuation Markov chains8.

8Only (n(i) − 1) runs because the last sentence type is “Review END”.
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To help calculating (1), we can further derive

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] logπs(s
(i)
1 ) =

∑
s∈S

P
[
s
(i)
i1 = s

∣∣∣ p(i); θ ′] logπs(s)

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] logAs(s
(i)
j−1, s(i)j ) =

∑
s,s ′∈S

P
[
s
(i)
j−1 = s, s(i)j = s

∣∣∣ p(i); θ ′] logAs(s, s ′)

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] logπ
s
(i)
j
p (p

(i)
j,1 ) =

∑
s∈S

P
[
s
(i)
j = s

∣∣∣ p(i); θ ′] logπsp(p
(i)
j,1 )

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] logA
s
(i)
j
p (p

(i)
j,k−1,p(i)j,k) =

∑
s∈S

P
[
s
(i)
j = s

∣∣∣ p(i); θ ′] logAsp(p
(i)
j,k−1,p(i)j,k)

Substitute these equations into (1), we have

Es|p;θ ′
[
L(s,p; θ)

]
=

n∑
i=1

∑
s(i)∈Sn(i)

P
[
s(i)

∣∣∣ p(i); θ ′] log P
[
s(i),p(i); θ

]

=

n∑
i=1

∑
s∈S

P
[
s
(i)
1 = s

∣∣∣ p(i); θ ′] logπs(s)

+

n∑
i=1

n(i)∑
j=1

∑
s,s ′∈S

P
[
s
(i)
j−1 = s, s(i)j = s

∣∣∣ p(i); θ ′] logAs(s, s ′)

+

n∑
i=1

n(i)−1∑
j=1

∑
s∈S

P
[
s
(i)
j = s

∣∣∣ p(i); θ ′] logπsp(p
(i)
j,1 )

+

n∑
i=1

n(i)−1∑
j=1

m
(i)
j∑

k=2

∑
s∈S

P
[
s
(i)
j = s

∣∣∣ p(i); θ ′] logAsp(p
(i)
j,k−1,p(i)j,k)

Using Lagrange multiplier, we will find d
dθEs|p;θ ′

[
L(s,p; θ)

]
= 0 when
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∀s, s ′ ∈ S, ∀p,p ′ ∈ P,



πs(s) ∝
∑n
i=1 P

[
s
(i)
1 = s

∣∣∣ p(i); θ ′]
As(s, s ′) ∝

∑n
i=1

∑ni
j=1 P

[
s
(i)
j−1 = s, s(i)j = s

∣∣∣ p(i); θ ′]
πsp(p) ∝

∑n
i=1

∑n(i)−1
j=1 P

[
s
(i)
j = s

∣∣∣ p(i); θ ′] 1
(
p
(i)
j,1 = p

)
Asp(p,p ′) ∝

∑n
i=1

∑n(i)−1
j=1 P

[
s
(i)
j = s

∣∣∣ p(i); θ ′]∑m
(i)
j

k=2 1
(
p
(i)
j,k−1 = p,p(i)j,k = p ′

)

It is easy to show that this indeed gives arg maxθEs|p;θ ′
[
L(s,p; θ)

]
.

With P
[
si,1 = s

∣∣ pi, θ ′] (node marginals) and P
[
si,j−1 = s, si,j = s

∣∣ pi, θ ′]
(edge marginals) from forward-backward algorithm, we have the full up-

date equation for the EM algorithm9.

4 Results

A dataset of Steam reviews released online by Matt Mulholland with MIT

license10 is used to train the model. In this experiment, the hyperparameter

is set as N = 7.

4.1 Extracted sentence types

Once the parameter mle is found, we essentially extractedN sentence types—

N from positive reviews and N from negative reviews—from the dataset,

9Actually, in each iteration, we also need to artificially give “Review END” and “Sen-
tence END” states transition probabilities so that they are absorbing states because their
absorbing behavior is only required by our assumptions but actually non-existent in data.

10Available at https://github.com/mulhod/steam_reviews.
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represented as 2NMarkov chains.

For instance, here are two examples from an extracted sentence type of

positive reviews11 in figure 5.

Figure 5: Examples from sentence type 1 of positive reviews.

This sentence type appears to have runs of exclamation marks at the

end and likely expresses strong enthusiasm and excitement.

Here are two examples from a sentence type of negative reviews in

figure 6.

Figure 6: Examples from sentence type 1 of negative reviews.

This sentence type appears to have runs of mixed question marks and

exclamation marks at the end and likely expresses dissatisfaction or even

anger.

Here are three examples from a more complicated sentence type, sen-

tence type 2 of positive reviews in figure 7.

11The two sentences are selected as examples because they have a high posterior of being
of the sentence type according to the trained parameters. Other examples are also selected
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Figure 7: Examples from sentence type 2 of positive reviews.

Although punctuations from these three sentences follow a general

[+ -] list structure, we can see various other punctuations are mixed in-

between, making the pattern “noisier”. However, our model still manages

to capture this sentence type structure because

1. that the nature of the model is probabilistic, and

2. that these sentences serve similar structural roles in the review text,

which can be captured by the sentence type level Markov chain.

Interestingly, the model also identifies a common formatting pattern as a

sentence type, as shown in figure 8.12

in the same way.
12Notice how the punctuation features are not affected by typo “SPILLER”.
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Figure 8: Examples from sentence type 4 of positive reviews.

4.2 Sentence transitions

Since the model defines how sentences are related to one another, the learned

results also provide many insights on how sentences are structured in re-

views.

For example, the fitted parameters indicate a very high transition prob-

ability Âpositive
s (5, 1) = 0.999946. As shown in figure 5, sentence type 1 of

positive reviews usually have a run of exclamation marks at the end. Look-

ing for a structural pattern, we can examine the examples from sentence

type 5 of positive reviews in figure 9 below.

Here we can recognize a pattern that some reviewers use a tremendous

amount of exclamation marks in one sentence, and then less but still many

exclamation marks in the sentence right after. It is likely the case that the

reviewers get extremely excited, and then calm down a little but is still very

eager to recommend the product.

In addition, sentence type 0 of negative reviews learns an interesting

pattern, the URL, as shown in figure 10 below. In addition, the mle actu-

ally shows a high transition probability from this sentence type to “Review
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Figure 9: Examples from sentence type 5 of positive reviews.

END”. As it turns out, in order to support their arguments, some reviewers

tend to include hyper links at the end of their reviews that direct to articles

and posts on the game features they dislike. This discovery also reveals a

common structural pattern of how reviews are written.
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Figure 10: Examples from sentence type 0 of positive reviews.

4.3 Comparing with model without sentence types

From the above results, it is clear that the concept of sentence type defi-

nitely exists in data. To further illustrate this point, we also fitted a simple

model without sentence types, where punctuations in each sentence is gen-

erated from the same Markov chain.

We sampled from the fitted simple model, and observed that they gen-

erally look lacking of structure. For instance, the following sample seems

to list pros and cons, but weirdly has other sentences mixed in between:

, .
- , , . .
, , .
.
- , , , , , !

On the other hand, samples from our proposed model with sentence types

look much more like from real reviews, e.g.
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- .
.
. . .
- - - - - - : ?
, + + , , . .
.
. . . . . . .

This is also an intuitive evidence of the usefulness of sentence type concept.

5 Future work

1. Since two models are fitted on positive and negative reviews sepa-

rately, we can easily use the models to perform prediction task.

2. Currently the hyperparameter N is artificially defined, we can also

use more advanced methods for model selection.

6 Conclusion

The graphical model with sentence type on punctuations is able to pro-

vide us interesting and informative insights on the review structure, e.g.

sentence type extraction, sentence transitions, etc. Moreover, these mean-

ingful results also indicate huge amount of information conveyed by punc-

tuations as well as importance of the sentence type concept.

All data and code for this project are available on GitHub13.

13https://github.com/SsnL/PunctuationAnalysis.
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Appendix A Forward-backward algorithm

Consider the directed Hidden Markov model where each time step t con-

tains a hidden random variable Zt and an observed random variable Xt.

The core of the forward-backward algorithm is the following conditional

probability equations.

Definition. αt(z) = P [X1 = x1, . . . ,Xt = xt,Zt = z].

Definition. βt(z) = P [Xt+1 = xt+1,Xt+2 = xt+2, . . . | Zt = z].

Fact. P [Zt = z] ∝ αt(z)βt(z).

These α and β functions can be easily computed as recurrences.

Fact (Forward backward algorithm).

αt(z) =


π(z) if t = 1

P [xt | Zt = z]
∑
z ′ αt−1(z

′)A(z ′, z) otherwise

βt(z) =


1 if t = T∑
z ′ A(z, z

′)βt+1(z
′)P

[
xt+1

∣∣ Zt+1 = z ′
]

otherwise

Fact. With these numbers calculated, we can find

ξt(z
′, z) = P

[
Zt−1 = z ′,Zt = z

∣∣ x]
=
αt−1(z

′)A(z ′, z)P [xt | Zt = z]βt(z)

P [x]
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